ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-11-01
    Description: We report a detailed longitudinal study of the first patient to be treated (in 1973) for paroxysmal nocturnal hemoglobinuria (PNH) with syngeneic bone marrow transplantation (BMT). The patient subsequently relapsed with PNH in 1983, and still has PNH to date. Analysis of thePIG-A gene in a recent blood sample showed in exon 6 an insertion-duplication causing a frameshift. Polymerase chain reaction (PCR) amplification of the PIG-A exon 6 from bone marrow (BM) slides obtained before BMT showed that the duplication was not present; instead, we found several single base pair substitutions in exons 2 and 6. Thus, relapse of PNH in this patient was not due to persistence of the original clones; rather, it was associated with the emergence of a new clone. These findings support the notion that the BM environment may create selective conditions favoring the expansion of PNH clones. © 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-04
    Description: Key Points The mechanism of bone marrow failure (BMF) in PNH is not known. Novel CD1d-restricted, GPI-specific T cells are present in PNH patients and might be responsible for BMF.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-11-01
    Description: We report a detailed longitudinal study of the first patient to be treated (in 1973) for paroxysmal nocturnal hemoglobinuria (PNH) with syngeneic bone marrow transplantation (BMT). The patient subsequently relapsed with PNH in 1983, and still has PNH to date. Analysis of thePIG-A gene in a recent blood sample showed in exon 6 an insertion-duplication causing a frameshift. Polymerase chain reaction (PCR) amplification of the PIG-A exon 6 from bone marrow (BM) slides obtained before BMT showed that the duplication was not present; instead, we found several single base pair substitutions in exons 2 and 6. Thus, relapse of PNH in this patient was not due to persistence of the original clones; rather, it was associated with the emergence of a new clone. These findings support the notion that the BM environment may create selective conditions favoring the expansion of PNH clones.© 1998 by The American Society of Hematology.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-11-16
    Description: Life-threatening thromboembolism (TE) is the most feared complication in patients with paroxysmal nocturnal hemoglobinuria (PNH). Thrombophilia in PNH likely involves a hypercoagulable state, possibly due to intravascular hemolysis with scavenging of the coagulation regulator nitric oxide, and platelet activation. Approximately 45% of PNH deaths result from TE. Thrombosis is more frequent in patients with larger PNH clones, but can occur in patients with smaller clones. Primary prophylactic anti-coagulation may reduce the thrombotic risk in PNH patients, although controlled studies have not been performed and there is a known serious hemorrhage risk. A randomized, placebo-controlled, 26-week phase 3 study of the terminal complement inhibitor eculizumab in 87 PNH patients (TRIUMPH) recently demonstrated dramatic reductions in intravascular hemolysis and RBC transfusions; 1 TE was reported with placebo and 0 with eculizumab. This single study was not powered to examine the effect of eculizumab on TE, and we prospectively examined the aggregate TE event rate in eculizumab-treated patients from TRIUMPH, the two other PNH trials, and the subsequent phase 3 extension study as compared to each patient’s pre-treatment event rate. Before receiving eculizumab, examination of patient records identified 126 TE events in 195 patients, and 103 were on anticoagulants. While pre-treatment TE event rates were variable in the 3 individual PNH studies, eculizumab reduced TE in each study. The TE event rate with eculizumab treatment was 1.22 per 100 patient years, compared to 7.49 (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-15
    Description: CD157, a glycosylphosphatidylinositol (GPI)–anchored protein encoded by a member of the CD38 NADase/ADP-ribosyl cyclase gene family, is expressed on the surface of most human circulating neutrophils. This work demonstrates that CD157 is a receptor that induces reorganization of the cytoskeleton and significant changes in cell shape, and that signals mediated by CD157 act through modulation of cytosolic Ca2+ concentration. These signals are independent of the products of CD157's enzymatic activities (ie, cyclic adenosine diphosphate [ADP]–ribose and ADP-ribose). Indeed, the enzymatic activities of CD157 in circulating neutrophils as well as in dimethyl sulfoxide (DMSO)–differentiated (CD157+/CD38-) HL-60 cells, are hardly detectable. This work also shows that the receptorial activity relies on cross-talk between CD157 and β2 integrin. CD157 localizes in GM1-enriched lipid rafts and, upon activation, it migrates to the uropod, a structure specialized in motility and adhesive functions. Indeed, CD157 is involved in adhesion to extracellular matrix proteins and in chemotaxis induced in vitro by formyl-methionyl-leucyl-phenylalanine (fMLP). These findings were consistent with the results obtained in neutrophils from patients with paroxysmal nocturnal hemoglobinuria (PNH), in which CD157 is deficient. These neutrophils showed constant defects in adhesion and migration. Our data attribute specific and crucial roles to CD157 in the regulation of innate immunity during inflammation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-11-16
    Description: PNH is an acquired clonal disorder of the hematopoietic stem cell (HSC) characterized by intravascular hemolysis, venous thrombosis, and variable degrees of bone marrow failure. In PNH a somatic mutation of the X-linked PIG-A gene in HSC results in complete or partial deficiency of all proteins anchored by the glycosylphosphatidylinositol (GPI) on the membrane of the mutated HSC and in its mature progeny. The close association between PNH and Idiopathic Aplastic Anemia (IAA), and other lines of evidence support the hypothesis that auto-reactive T cells might be responsible for the expansion of hematopoietic PNH clone(s), which is required to cause clinical PNH. Stemming from our observation of a unique patient with PNH and with a large granular lymphocyte (LGL) leukemia with NKT phenotype (Karadimitris et al, Br J Haematol115:1010, 2001), we have measured systematically the percentage of NKT [CD3+ CD8+(bright) CD57+] cells in the peripheral blood of PNH patients. The proportion of NKT cells was quite variable and very similar in 18 patients (6.9±5.9; range: 0.8 – 22.3%) and in 18 healthy individuals (6.5±5.2; range: 0.9 – 21.2; P〉0.5). However, when we analyzed the size distribution of the complementarity-determining region 3 (CDR3) of the TCR-beta chain genes in sorted NKT cells, there was a sharp difference. In healthy individuals we observed a normally distributed ladder of bands of different sizes. By contrast, in 14 out of 15 PNH patients we found a markedly non-random (“oligoclonal”) pattern; and in each patient some clones were predominant. In 6 out of 6 patients followed-up longitudinally over 6–12 months the “oligoclonal” pattern was consistent and persistent. In each of 10 patients in whom we carried out systematic sequencing of the TCR-beta CDR3 of sorted NKT cells we have observed an average of 25 different TCR-beta CDR3 sequences (out of an average of 80 total sequences obtained): but only one or two sequences were predominant. Interestingly, an identical or quasi-identical (single amino acid difference) sequence was found in 4 patients; and in two of these the sequence belonged to one of the predominant clones. In addition, in 5 cases a sequence found in one patient was subsequently found also in another patient. These data are reminiscent of recent findings reported in patients with IAA (Risitano et al, Lancet364:355, 2004): in these patients, however, no identity of sequence was detected. We surmise that in both groups of patients specific T cells clones may be responsible for damage to normal HSCs. However, it is possible that in IAA a number of different antigens are recognized on HSCs in individual patients; whereas in PNH the range of potential target antigens is much more restricted, because they must be present on normal HSC but not on PNH HSCs, thus enabling them to survive the auto immune attack and to expand.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-11-16
    Description: Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia characterized by intravascular hemolysis, often resulting in the need for red blood cell (RBC) transfusions. PNH RBCs lack two complement regulatory molecules - CD59, a terminal complement inhibitor, and CD55, a C3 convertase inhibitor. Eculizumab, a humanized monoclonal antibody that inhibits terminal complement by binding to C5, effectively controls intravascular hemolysis as determined by a dramatic reduction in lactate dehydrogenase (LDH) to levels in or just above the normal range. Control of intravascular hemolysis in these patients led to a reduction in, or cessation of, RBC transfusions. During eculizumab treatment, a majority of patients demonstrate evidence of residual, low-level hemolysis; LDH levels remain slightly elevated, haptoglobin levels are low or undetectable, and bilirubin levels are above normal. We hypothesized that this low-level residual hemolysis may be due to clearance of PNH RBCs through a C3b-mediated mechanism. Therefore we investigated C3 deposition on RBC in PNH patients before and on eculizumab. A direct antiglobulin test (DAT) using monoclonal anti-C3d was positive in 29 out of 39 PNH patients on eculizumab. Of these 29 DAT-positive patients, who were all receiving transfusions, 25 had DAT testing prior to eculizumab therapy and only one of these was positive. DAT was negative in all of 8 normal volunteers. By two-color flow cytometric analysis with anti-CD59 and anti-C3, the majority of patients on eculizumab demonstrated three distinct RBC populations: CD59+/C3− (normal RBCs); CD59-/C3− (PNH RBCs without C3 coating); and CD59-/C3+ (PNH RBCs coated by C3). No CD59+/C3+ RBCs were observed. Of 21 DAT positive eculizumab treated patients tested, the median proportion of total RBCs that were C3b positive was 17.6%. 18 of 29 [62%] eculizumab patients with a positive DAT received at least one transfusion during eculizumab therapy compared with 1 of 10 [10%] for DAT negative patients (p=0.01), although even patients who did not become transfusion independent during eculizumab treatment showed a marked reduction in transfusion requirement. The median hemoglobin value for the 29 DAT positive eculizumab patients was 9.8 g/dL compared with 11.3 g/dL in the 10 DAT negative eculizumab patients (p= 0.08). No apparent relationship between LDH and DAT positivity was observed. It is proposed that resolution of intravascular hemolysis in PNH patients on eculizumab results in deposition of C3b on the surface of PNH RBCs which may explain, at least in part, the residual low level hemolysis occurring in some patients. This appears to be a previously undescribed mechanism of RBC clearance in PNH, most likely obscured by the rapidity of intravascular hemolysis in the absence of eculizumab therapy. Despite the low-level residual hemolysis, patients continue to receive significant benefit from eculizumab treatment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-03
    Description: Idiopathic aplastic anemia (IAA) is an acquired bone marrow disease probably caused by an auto-immune attack against hematopoietic stem cells (HSCs), which leads to bone marrow failure. Many abnormalities have been observed in the T cell compartment, but the putative auto-antigen(s) remain elusive. A large body of evidence links paroxysmal nocturnal hemoglobinuria (PNH) to IAA, supporting the notion that autoimmunity is a key pathogenic mechanism in both diseases. In PNH, auto-reactive T cells may be the 'noxious agent' capable of killing GPI positive HSCs while sparing GPI negative HSCs. Recently, CD1d restricted, GPI-specific T-cells have been demonstrated in PNH patients. Here, we investigate whether CD1d restricted, GPI-specific T cells are also present in IAA patients. When peripheral blood mononuclear cells (PBMNCs) from 14 newly diagnosed IAA patients [12 of whom had a small percentage (between 0.003% and 5%) of GPI-negative granulocytes] were co-cultured with antigen presenting cells (APCs) expressing CD1d and competent for the synthesis of GPI, we detected GPI specific T cells (CD8+CD1d/GPI dimer+ T cells) in 10 out of 14 patients (71%) at a significantly higher abundance than in co-culture experiments performed with PBMNCs from healthy controls (Fig. 1). In fact, the frequency of CD8+CD1d/GPI dimer+ T cells was below the cutoff value of 0.35% in all the 15 healthy controls but only in 4 out 14 IAA patients (Fisher test, P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-11-01
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-06
    Description: PNH is a rare acquired clonal disorder of the hematopoietic stem cell, characterized by a somatic mutation that inactivates the X-linked PIGA gene: this in turn results in deficiency on the cell surface of all proteins anchored by the glycosylphosphatidylinositol (GPI) molecule. Two of these proteins,CD55 andCD59, are complement regulators and their deficiency is responsible for the susceptibility of red cells (RBCs) from the mutant clone to lysis by activated complement. Since oxidative damage is another well-known mechanism of hemolysis (as in G6PD deficient red cells), we have investigated whether this plays a role also in PNH. To this end, we have carried out experiments on RBCs from healthy donors and on PNH-like RBCs (obtained in vitro from the same donors through the use of anti-CD55 and anti-CD59 blocking moAb). After exposure to AB0-compatible serum (in which thecomplement alternative pathway was activated by mild acidification) all PNH-like (but not normal) RBCs were lysed. In parallel experiments in which complement was blocked by eculizumab (ECU) - a moAb that binds to the complement component C5 and controls intravascular hemolysis in PNH patients - we measured the levels of reactive oxygen species (ROS) by the dichlorofluorescin diacetate assay. We found no significant difference of ROS levels between normal RBCs and PNH-like RBCs. We next tested in a similar way G6PD-deficient RBCs, because these are known to be exquisitely sensitive to oxidative damage. We found that ROS levels were significantly higher in the G6PD deficient RBCs that have been made PNH-like (Fig. 1). Thus, complement activation on the surface of PNH-like RBCs results in the production of ROS that can be demonstrated when C5-blockade prevents complement-mediated lysis of RBCs. The notion that G6PD deficiency can interact with PNH was strongly corroborated by the clinical observation of a 40yo woman from Sardinia (Italy) with a 2 years history of pancytopenia, who then developed florid hemolytic PNH: she had anemia with normal granulocyte and platelet counts, dark urine, high reticulocytosis, LDH up to 5x upper normal level, 95% GPI-negative granulocytes. When the patient was started on ECU. LDH levels promptly returned to normal, PNH RBCs rose from 20% (before ECU) to 42%, but reticulocyte count (~250x109/L) and blood transfusion requirement remained high (10 units in the last year). 39% of the GPI-negative RBCs had bound C3 fragments The peripheral blood smear revealed marked macro-anisocytosis, poikilocytosis, spherocytes, and hemighosts: a picture consistent with oxidative damage as seen in G6PD deficient patients during a hemolytic attack. The RBC G6PD activity was about one-half of normal (5 IU/g Hb), and DNA analysis revealed heterozygosity for the G6PD Mediterranean (Med) mutation. By mRNA sequence analysis we found that the GPI-negative clone expressed only the G6PD Med allele, suggesting that the PIG-A mutation took place in a stem cell in which the normal G6PD gene was on the inactive X-chromosome (G6PD, like PIG-A, is on the X chromosome); therefore, all the patients' PNH RBCs were also all G6PD deficient. We have previously shown that the clinical expression of PNH can be influenced by inherited factors: specifically, a polymorphism of the complement receptor 1 (CR1) gene correlates with the blood transfusion requirement of patients on ECU (Rondelli et al, Haematologica 2014). However, the patient here reported was homozygous for the more favorable allele ofCR1. Instead, in keeping with our experimental data, the poor response to ECU seen in this patient results probably from a unique interaction, within the same population of RBCs, between the acquired PNH abnormality and her inherited G6PD deficiency This type of interaction is novel and it seems to have pharmacogenetic implications. Indeed, on its own G6PD deficiency affects mildly the clinical expression of PNH, because complement activation causes RBC lysis regardless; however, paradoxically, when the lysis of PNH RBCs is prevented by C5 blockade, complement activation results in oxidative damage, with which PNH G6PD deficient RBCs are unable to cope. Except for one case previously reported by Oni et al (Blood 1970), this is the first detailed study of PNH associated with G6PD deficiency. Since in some parts of the world the frequency of G6PD deficiency can be as high as 30% or more, we expect that more cases of this association will be discovered in the future. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...