ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-18
    Description: LBA-4 Somatic mutations in IDH1 and IDH2 occur frequently in clonal myeloid disorders and result in the neomorphic ability of IDH to convert α-ketoglutarate (2-OG) to the R-enantiomer of 2-hydroxyglutarate (R-2HG) (Dang, et al Nature 462: 739, 2009). 2OG is an essential cofactor for many metabolic enzymes, including the TET family of 5-methylcytosine hydroxylases and the EglN family of prolyl-4-hydroxylases, and 2HG has been shown to inhibit several 2OG-dependent dioxygenases in vitro, including TET2 (Xu, et al Cancer Cell 19: 17, 2011; Figueroa, et al Cancer Cell 18: 1, 2010). We recently showed that the (S) enantiomer of 2HG (S-2HG), but not the (R) enantiomer of 2HG (R-2HG), inhibits the EglN prolyl-4-hydroxylases (Koivunen, et al. Submitted for publication). Moreover, we found that R-2HG can act as a cofactor to promote the hydroxylase activity of EglN1, EglN2 and EglN3. We hypothesized that the qualitatively different effects of R- and S-2HG on the EglN prolyl-4-hydroxylases might influence their transforming activities. In order to elucidate the role of mutant IDH, and R- and S-2HG, in myeloid leukemia, we developed a myeloid transformation assay using TF-1 cells. TF-1 is a human erythroleukemia cell line that requires GM-CSF for growth and undergoes erythrocytic differentiation when stimulated with erythropoietin (EPO). We expressed wild-type IDH1 (WTIDH1), a tumor-derived mutant IDH1 (IDH1R132H), or a catalytically inactive IDH1R132H variant (IDH1R132H/3DN) in TF-1 cells. As expected, cells expressing IDH1R132H, but not cells expressing WTIDH1 or IDH1R132H/3DN, had dramatically elevated levels of 2HG. Furthermore, we found that expression of IDH1R132H, but not WTIDH1 or IDH1R132H/3DN, conferred growth factor-independence to TF-1 cells (Figure 1a), and blocked their EPO-induced differentiation (Figure 1b). In order to determine whether transformation of TF-1 cells by IDH1R132H is mediated by 2HG, we treated TF-1 cells with cell-permeable esterified R-2HG or S-2HG. R-2HG recapitulated the growth and differentiation phenotypes of IDH1R132H expression in a dose-dependent manner. In contrast, S-2HG did not induce these phenotypes at any concentration tested. Next, we examined the effect of loss of TET2 on TF-1 cells. We infected TF-1 cells with shRNAs targeting TET1 or TET2 and found that knockdown of TET2, but not TET1, induced growth factor-independence and blocked EPO-induced differentiation similarly to expression of IDH1R132H or treatment with R-2HG. Interestingly, we found that transformation by IDH1R132H and TET2 knockdown were reversed by inhibition of EglN1 (Figure 2), suggesting that R-2HG, but not S-2HG, transforms leukemic cells by inhibiting targets such as TET2 while preserving, and possibly enhancing, EglN activity. These findings further suggest that therapeutic targeting of EglN prolyl-4-hydroxylase activity might be effective in the treatment of IDH1-mutant and TET2-mutant myeloid leukemias. Disclosures: Kaelin: Fibrogen: Consultancy, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-18
    Description: Abstract LBA-4 Somatic mutations in IDH1 and IDH2 occur frequently in clonal myeloid disorders and result in the neomorphic ability of IDH to convert α-ketoglutarate (2-OG) to the R-enantiomer of 2-hydroxyglutarate (R-2HG) (Dang, et al Nature 462: 739, 2009). 2OG is an essential cofactor for many metabolic enzymes, including the TET family of 5-methylcytosine hydroxylases and the EglN family of prolyl-4-hydroxylases, and 2HG has been shown to inhibit several 2OG-dependent dioxygenases in vitro, including TET2 (Xu, et al Cancer Cell 19: 17, 2011; Figueroa, et al Cancer Cell 18: 1, 2010). We recently showed that the (S) enantiomer of 2HG (S-2HG), but not the (R) enantiomer of 2HG (R-2HG), inhibits the EglN prolyl-4-hydroxylases (Koivunen, et al. Submitted for publication). Moreover, we found that R-2HG can act as a cofactor to promote the hydroxylase activity of EglN1, EglN2 and EglN3. We hypothesized that the qualitatively different effects of R- and S-2HG on the EglN prolyl-4-hydroxylases might influence their transforming activities. In order to elucidate the role of mutant IDH, and R- and S-2HG, in myeloid leukemia, we developed a myeloid transformation assay using TF-1 cells. TF-1 is a human erythroleukemia cell line that requires GM-CSF for growth and undergoes erythrocytic differentiation when stimulated with erythropoietin (EPO). We expressed wild-type IDH1 (WTIDH1), a tumor-derived mutant IDH1 (IDH1R132H), or a catalytically inactive IDH1R132H variant (IDH1R132H/3DN) in TF-1 cells. As expected, cells expressing IDH1R132H, but not cells expressing WTIDH1 or IDH1R132H/3DN, had dramatically elevated levels of 2HG. Furthermore, we found that expression of IDH1R132H, but not WTIDH1 or IDH1R132H/3DN, conferred growth factor-independence to TF-1 cells (Figure 1a), and blocked their EPO-induced differentiation (Figure 1b). In order to determine whether transformation of TF-1 cells by IDH1R132H is mediated by 2HG, we treated TF-1 cells with cell-permeable esterified R-2HG or S-2HG. R-2HG recapitulated the growth and differentiation phenotypes of IDH1R132H expression in a dose-dependent manner. In contrast, S-2HG did not induce these phenotypes at any concentration tested. Next, we examined the effect of loss of TET2 on TF-1 cells. We infected TF-1 cells with shRNAs targeting TET1 or TET2 and found that knockdown of TET2, but not TET1, induced growth factor-independence and blocked EPO-induced differentiation similarly to expression of IDH1R132H or treatment with R-2HG. Interestingly, we found that transformation by IDH1R132H and TET2 knockdown were reversed by inhibition of EglN1 (Figure 2), suggesting that R-2HG, but not S-2HG, transforms leukemic cells by inhibiting targets such as TET2 while preserving, and possibly enhancing, EglN activity. These findings further suggest that therapeutic targeting of EglN prolyl-4-hydroxylase activity might be effective in the treatment of IDH1-mutant and TET2-mutant myeloid leukemias. Disclosures: Kaelin: Fibrogen: Consultancy, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...