ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 1992-05-01
    Description: We have previously reported transformation to growth factor-independent proliferation in the interleukin-3 (IL-3)-dependent cell line FDC-P1 by high-level expression of the valine 12 Harvey RAS oncogene, following from a nonautocrine mechanism. The present study was undertaken to examine nuclear tertiary messenger, transcriptional response gene expression to deduce the intracellular signaling pathways responsible for this autonomous proliferation. We confirmed other reports that transformed p21RAS-expressing cells constitutively express the transcription factor complex jun/AP-1, in this case resulting from the ongoing expression of the c-jun and c-fos genes in the absence of IL-3. However, the ongoing growth factor independent expression of c-myc by a transcriptional mechanism in FDC-P1 cells expressing p21 RAS cannot be explained by intracellular signaling in the jun/AP-1 (protein kinase C) pathway. This conclusion derives from the observation that c-jun expression mediated via protein kinase C activation with phorbol ester (12–0-tetra decanoylphorbol-13-acetate, TPA) treatment does not lead to c-myc expression in parent FDC-P1 cells. On the contrary, FDC-P1 cells stably transfected with a c-myc gene controlled under the influence of a metallothionein IIA promoter (containing the TPA-responsive element [TRE]) express the transfected MTIIA-c-myc and downregulate the endogenous c-myc in response to protein kinase C activation with TPA. Further, nuclear proteins derived from cells expressing p21 RAS, which bind specifically to the purified c-myc P2 promoter, are not competed in their binding to the motif-rich P2 element by AP-1 oligonucleotide. Therefore, expression of the Harvey RAS oncogene in FDC-P1 myeloid cells leads to at least two pathways of cytoplasmic signaling. One pathway involves protein kinase C and c-jun/AP-1, but another pathway that is protein kinase C-independent appears to mediate c-myc transcription.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-05-01
    Description: We have previously reported transformation to growth factor-independent proliferation in the interleukin-3 (IL-3)-dependent cell line FDC-P1 by high-level expression of the valine 12 Harvey RAS oncogene, following from a nonautocrine mechanism. The present study was undertaken to examine nuclear tertiary messenger, transcriptional response gene expression to deduce the intracellular signaling pathways responsible for this autonomous proliferation. We confirmed other reports that transformed p21RAS-expressing cells constitutively express the transcription factor complex jun/AP-1, in this case resulting from the ongoing expression of the c-jun and c-fos genes in the absence of IL-3. However, the ongoing growth factor independent expression of c-myc by a transcriptional mechanism in FDC-P1 cells expressing p21 RAS cannot be explained by intracellular signaling in the jun/AP-1 (protein kinase C) pathway. This conclusion derives from the observation that c-jun expression mediated via protein kinase C activation with phorbol ester (12–0-tetra decanoylphorbol-13-acetate, TPA) treatment does not lead to c-myc expression in parent FDC-P1 cells. On the contrary, FDC-P1 cells stably transfected with a c-myc gene controlled under the influence of a metallothionein IIA promoter (containing the TPA-responsive element [TRE]) express the transfected MTIIA-c-myc and downregulate the endogenous c-myc in response to protein kinase C activation with TPA. Further, nuclear proteins derived from cells expressing p21 RAS, which bind specifically to the purified c-myc P2 promoter, are not competed in their binding to the motif-rich P2 element by AP-1 oligonucleotide. Therefore, expression of the Harvey RAS oncogene in FDC-P1 myeloid cells leads to at least two pathways of cytoplasmic signaling. One pathway involves protein kinase C and c-jun/AP-1, but another pathway that is protein kinase C-independent appears to mediate c-myc transcription.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-07-01
    Description: Steel factor (SLF) acts synergistically with various hematopoietic growth factors that use the Jak-Stat pathways in vivo and in vitro, although the contribution by SLF to this pathway is unknown. We show here that SLF induces time- and dose-dependent phosphorylation of Stat3 in the human growth factor-dependent cell lines MO7e and TF-1. This phosphorylation occurs exclusively on serine residues. Simultaneous stimulation with SLF plus other cytokines that induce tyrosine phosphorylation of Stat3, such as interleukin-9 (IL-9) in MO7e cells or IL-6 in TF-1 cells, resulted in tyrosine phosphorylation and enhanced serine phosphorylation of Stat3. Serine phosphorylation alone did not promote nuclear translocation or DNA binding activity to the sis- inducible element of Stat3. However, costimulation with SLF plus IL-9 in MO7e cells resulted in the nuclear translocation of serine- hyperphosphorylated Stat3. Serine phosphorylation of Stat3 was also observed by the stimulation of cells with granulocyte-macrophage colony- stimulating factor and IL-3, which do not induce tyrosine phosphorylation of Stat3. These results suggest that SLF might modulate the Jak-Stat3 pathway by serine phosphorylation and that the Jak-Stat pathway may be differentially regulated by the combinational stimulation of two or more cytokines.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-07-01
    Description: Steel factor (SLF) acts synergistically with various hematopoietic growth factors that use the Jak-Stat pathways in vivo and in vitro, although the contribution by SLF to this pathway is unknown. We show here that SLF induces time- and dose-dependent phosphorylation of Stat3 in the human growth factor-dependent cell lines MO7e and TF-1. This phosphorylation occurs exclusively on serine residues. Simultaneous stimulation with SLF plus other cytokines that induce tyrosine phosphorylation of Stat3, such as interleukin-9 (IL-9) in MO7e cells or IL-6 in TF-1 cells, resulted in tyrosine phosphorylation and enhanced serine phosphorylation of Stat3. Serine phosphorylation alone did not promote nuclear translocation or DNA binding activity to the sis- inducible element of Stat3. However, costimulation with SLF plus IL-9 in MO7e cells resulted in the nuclear translocation of serine- hyperphosphorylated Stat3. Serine phosphorylation of Stat3 was also observed by the stimulation of cells with granulocyte-macrophage colony- stimulating factor and IL-3, which do not induce tyrosine phosphorylation of Stat3. These results suggest that SLF might modulate the Jak-Stat3 pathway by serine phosphorylation and that the Jak-Stat pathway may be differentially regulated by the combinational stimulation of two or more cytokines.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...