ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (4)
  • 1
    Publication Date: 2015-12-03
    Description: Background : Most non-del 5q lower risk MDS patients (pts) are first treated with ESA, with about 50% (generally transient) responses, and second line treatments (TX) including hypomethylating agent (HMA), Lenalidomide (LEN) and investigational drugs are then often proposed, but their effect on overall survival (OS) is unknown. In a previous work on 253 such pts, we found worse OS with early failure to ESA, i.e. primary resistance (RES) or relapse (REL) 〈 6 months after ESA onset (Kelaidi, Leukemia, 2013), but only few pts had received, after ESA failure, TX other than RBC transfusions. In the present study, we gathered non-del 5q lower risk MDS treated with ESA from several EU MDS cooperative groups, and analyzed their outcome after ESA failure, and the effect of second line TX on survival. Methods : 1611 IPSS low and int-1 (lower risk) non del 5q MDS pts included in the French (GFM), Italian (FISM), Spanish (GESMD), Greek, Düsseldorf and Munich registries between 1997 and 2014, and treated by ESA were studied. Survival was assessed from failure of ESA (i.e. from primary failure evaluated after 12 to 24 weeks of ESA treatment, or from relapse after a response). Progression at ESA failure was defined upon progression to a higher IPSS-R class at ESA failure as compared with ESA onset. Results : At ESA onset, the 1611 pts were reclassified by IPSS-R in 16% very low, 54% low, 13% int, 6% high, 1% very high and 10% ND. HI-E (using IWG 2006 criteria) to ESA treatment was 66.9%, and the median duration of response was 15 months. The cohort of 1038 pts with ESA failure included 521 RES and 517 REL. Median OS was 4.2 years in REL and 3.7 years in RES pts (p=0.56), and no significant difference was seen, even after restricting the analysis to very low and low IPSS-R pts (p=0.81), or when analyzing "early" vs "late" failures, with cut-off points at 6 or 12 months, as we previously reported (Kelaidi, Leukemia, 2013). 336 (32%) pts received second line treatment (TX2) other than RBC transfusions, including HMA in 88 pts, LEN in 169 pts, and other TX (OT) in 79 pts (including 11 chemotherapy, 17 thalidomide, 11 immunosuppressors (ATG, cyclosporine), or investigational drugs), with response rates of 46%, 39% and 33% respectively (p=0.4). 87 pts had a third line TX (mostly a new drug, but also 7 pts who received HMA after LEN, and 33 pts LEN after HMA). Pts treated with LEN as TX2 were younger (median age 70 vs 75 for BSC, and 70 for HMA p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-03
    Description: Introduction: Gene expression studies have consistently identified a HOXA positive (HOXAPos) subgroup of T-cell acute lymphoblastic leukemia (T-ALL) (Ferrando et al, Cancer Cell 2002, Soulier et al, Blood 2005, Homminga et al, Cancer Cell 2011). It is however unclear if HOXAPos T-ALL constitutes a distinct and homogeneous clinical entity, and the biological consequences of HOXA over-expression have not been systematically examined. Methods: We identified and characterized the biological characteristics and clinical outcome of 55 HOXAPos cases among a cohort of 209 adult T-ALL patients who were uniformly treated as part of the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. Results: HOXAPos patients had higher rates of an early thymic precursor (ETP)-like immunophenotype (38% v 13.9%, p = 0.0008), early bone marrow chemoresistance (59.3% v 40.8%, p = 0.026) and positive minimal residual disease (MRD, 51.5% v 23.5%, p = 0.01) than the HOXANeg group. These differences were due to a particularly high frequency of chemoresistant ETP-ALL among HOXAPos cases harboring leukemic fusion proteins that trans-activate the HOXA locus (e.g. PICALM-MLLT10, SET-NUP214). Strikingly, the presence of an ETP-like immunophenotype conferred marked differences in outcome within the HOXAPos group (5 year event-free survival (EFS) 25% for HOXAPos ETP v 52.2% for HOXAPos non-ETP, p = 0.02), which were mirrored by corresponding increases in cumulative incidence of relapse (CIR, 57.1% v 25%, p = 0.01, Figure 1). In contrast, these survival differences were not seen in the HOXANeg patients, where ETP and non-ETP cases had similar 5 year EFS (54.9% v 50%, p = 0.73) and CIR (34.5% v 41.2%, p = 0.57). Multivariate analysis revealed that early bone marrow chemosensitivity was the clinico-biological covariate that had the strongest prognostic interaction with HOXA status. HOXA positivity conferred significant decreases in both the EFS and CIR of chemoresistant patients (p = 0.053 and 0.039 respectively), that was independent of white blood cell count (WCC), stem cell transplant (SCT), ETP phenotype, EGIL classification, and our recently reported risk classifier that integrates the prognostic effects of mutations of NOTCH1, FBXW7, RAS and PTEN (Trinquand et al, J Clin Oncol 2013). There were corresponding marked survival differences within the HOXAPos cohort between chemoresistant and chemosensitive cases. These disparities were not seen in the HOXANeg group, indicating that the prognostic value of chemosensitivity in adult T-ALL is specific to HOXAPos patients. Discussion: Our data show that clinico-biological phenotype is intimately linked to the underlying mechanism of HOXA locus deregulation, and we identify HOXA overexpression as a novel prognostic variable in ETP-ALL. Multivariate analysis suggests that this poor outcome is strongly related to intrinsic treatment resistance, and that this effect is exclusive to the HOXAPos cohort. Patients in the GRAALL-2003 and -2005 studies received enhanced induction and/ or salvage therapy in the event of poor early treatment response. Our results suggest that pediatric regimen-based intensification provides significant survival benefits for HOXANeg chemoresistant cases. In contrast, these modifications are inadequate for therapeutic rescue of the majority of HOXAPos chemoresistant ETP-ALL. The dramatically inferior prognosis of this group mandates consideration for alternative treatments in future clinical trials. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-06
    Description: In younger patients with acute myeloid leukemia (AML), standard intensive induction chemotherapy combines anthracyclins and cytarabine (Ara-C). While dosage is usually determined according to body-surface area (BSA), various chemotherapy adjustments are empirically performed in patients with high BSA from full dose administration to capping doses. The aim of the present study is to determine the outcome of younger AML patients with high BSA at diagnosis. Between November 2001 and April 2005, the prospective GOELAMS 2001 trial enrolled patients between 18 and 60 affected with non promyelocytic AML.1,2 Briefly, patients randomly received either daunorubicin or idarubicin in association with standard dose Ara-C during induction therapy. Height, weight and induction chemotherapy doses were registered at diagnosis. BSA was evaluated using the formula of Dubois and Dubois. BSA was categorized in low (BSA ≤1.5m2), intermediate (1.5
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-05
    Description: In spite of CR rates of 75-80% currently achieved with anthracycline-cytarabine regimens in younger patients with favorable and intermediate-risk AML, relapse remains a major issue. The French AML intergroup launched the BIG-1 trial in 2015 in order to test different strategies aiming at reducing relapse rate and improving survival. All patients with previously untreated non-APL and non-CBF AML aged 18-60 years are eligible for trial participation which is still ongoing. The trial design includes several randomizations (R): Idarubicin vs daunorubicin for induction (R1), HDAC vs IDAC for consolidation (R2), post-transplant GVHD prophylaxis modalities (R3). R4 consists of nested randomized phase 2-3 trials testing the addition of new drugs to the IDAC or HDAC backbones during the consolidation phase. The protocol was designed to allow the sequential evaluation of several new agents over the trial period. Vosaroxin (VOS) has shown antileukemic activity (Advani, Clin Cancer Res 2010). The combination of VOS and IDAC showed higher CR rate and a non-significant OS benefit as compared to a placebo-IDAC arm in a large phase 3 trial in patients with refractory/relapsed AML (Ravandi Lancet Oncol 2015). We hypothesized that the addition of VOS to IDAC would improve LFS as compared to IDAC alone when given during the consolidation phase. Methods. Eligibility criteria in the BIG-1 trial include: previously untreated AML according to WHO 2016 classification (AML secondary to an untreated myelodysplastic syndrome allowed), age 18-60, ECOG PS 0-2, no cardiac contra-indication to anthracyclines. Patients with APL and patients with CBF-AML are excluded. Eligibility criteria for R4 randomization were: Patients in first CR/CRp/CRi following 1 or 2 courses of induction chemotherapy according to the BIG-1 protocol; ELN2010 favorable- and intermediate-risk groups; ECOG PS ≤ 3; Absence of severe uncontrolled infection. Patients were scheduled to receive Cytarabine: 1.5 gr/m² twice daily on D1, 3, 5 with or without Vosaroxin: 70 mg/m² on D1 and D4 per cycle for a maximum of three cycles at 4-6 weeks intervals. Patients scheduled for allo-SCT or those who had reached CR after 2 induction cycles were to receive only 2 cycles of VOS-IDAC/IDAC. R4-VOS sub-trial was designed to detect an increase of the 18-month LFS from 55% to 75% using a two-step phase 2-3 study. With type I and II errors set at 20% and using a one-sided test, 70 patients had to be randomized. If the predefined statistical objectives were met, study would resume recruiting 130 additional patients in the phase 3 part for a total of 200 patients. Results. 70 patients (35 in each arm), median age 47, ELN 2010 favorable and intermediate risk groups, have been included. 94% had de novo AML with NPM1 mutations in 46% and FLT3-ITD in 20%. As shown in the Table, patients and disease characteristics were not different between the 2 arms except for slightly more patients in CRi in the VOS-IDAC arm. Patients received a median of 4 chemotherapy cycle (including induction; range 3-4) without difference between the treatment arms. 13 patients (18.5%) received an alloSCT (VOS-IDAC: 5, IDAC: 8). Time between cycle 1 and cycle 2 was significantly longer in the VOS-IDAC arm (p= 0.017). Hematologic toxicity was higher in the VOS-IDAC group with a significantly longer neutropenia duration after each cycle, a greater number of RBC and Platelet transfusions, a significantly greater number of days with antibiotics and antifungal therapies and days with fever (during cycle 1). There were also significantly more cutaneous toxicity, mild nausea/vomiting and diarrhea in the VOS-IDAC arm. With a median follow-up of 19 months, 14 and 15 patients relapse in the VOS-IDAC vs IDAC arms respectively. The study primary endpoint has not been reached and LFS was not significantly higher in the VOS-IDAC arm (18-month LFS of 51% vs 46% for VOS-IDAC vs IDAC respectively; see Figure) even after accounting for allo-SCT as a time-dependent variable (p-value=.49). The 2-year CIR was 51% vs 46% (p=NS) and 2-year OS was 88% vs 68% (p=NS). Conclusion, the study's primary endpoint has not been met and results fail to show a significant improvement of 18-month LFS with the addition of VOS to IDAC consolidation of favorable/intermediate-risk AML in first CR. The phase 3 part of the trial will not open. The BIG-1 trial is still ongoing and uses the same design to tests addition of other drugs to the IDAC/HDAC consolidation backbone. Disclosures Guieze: abbvie: Honoraria, Other: advisory board, travel funds; janssen cilag: Honoraria, Other: advisory board, travel funds; roche: Other: travle funds; gilead: Honoraria, Other: travel funds; astrazanecka: Honoraria, Other: advisory board. Dombret:Pfizer: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Nova: Consultancy, Research Funding; Celgene: Consultancy; Jazz Pharma: Consultancy, Research Funding; Amgen: Consultancy, Research Funding; Sunesis: Consultancy; Servier: Consultancy, Research Funding; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Menarini: Consultancy; Janssen: Consultancy; Cellectis: Consultancy; Shire-Baxalta: Consultancy; Immunogen: Consultancy; Otsuka: Consultancy; Abbvie: Consultancy. Hunault:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Diachi: Membership on an entity's Board of Directors or advisory committees; Jansen: Honoraria; Servier: Honoraria, Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...