ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-15
    Description: Genetic instability is a hallmark of chronic myeloid leukemia (CML). Recently, several major abnormalities in DNA repair mechanisms have been identified in primitive CML cells that likely explain the additional mutations these cells develop leading to their selective growth under tyrosine kinase inhibitor (TKI) therapies. It seems likely that such mechanisms also underlie disease progression in CML. However, an understanding of the specific somatic mutations involved and investigations of their resulting effects on the biological behavior of primary sources of primitive chronic phase (CP) CML cells is extremely challenging. As an alternative approach, we have now explored the possibility of applying whole genome sequencing (WGS) to induced pluripotent stem cells (iPSCs) derived from primitive CML cells to determine if such iPSCs, genocopy the mutations present in the diagnostic sample from which they were generated and whether primitive hematopoietic cells derived from these iPSCs might be useful for future drug screening experiments. To this end, we chosen a CML patient whose CP clonogenic cells contained both the Ph1 chromosome and the JAK2 V617F mutation and whose disease progressed into an accelerated phase (AP) during TKI therapy. iPSC were generated from leukemic cells obtained at the time of AP using Oct4, Sox2, Klf4 and c-Myc gene transfer. The presence of both BCR-ABL and JAK2 V617F was confirmed in 24/24 iPSC colonies. A control iPSC line negative for both genes was similarly established from the patient’s CD34+CD31+ endothelial progenitors purified from peripheral blood. We then performed WGS on DNA prepared from the leukemic cells obtained at diagnosis of CP (CML 006), the AP cell-derived iPSCs (PB34), and the control non-leukemic iPSCs (PB13), using a HighSeq Illumina platform. WGS revealed 845,175 somatic SNVs and 68,817 somatic short Indels in the CP leukemic cells at diagnosis that were not present in the non-leukemic iPSCs (PB13). 49,225 of these SNVs and 11,665 of the short Indels were novel (absent in the dbSNP database), and 419 were found in the COSMIC database. We identified 274 novel SNVs (3 missense, 161 nonsense, 108 synonymous and 2 splice site mutations) and 46 short Indels (19 insertions and 27 deletions). Most of the novel coding SNVs and Indels were heterozygous and an estimation of the variant allele frequency indicated these were present in virtually all leukemic cells. In addition to the JAK2 V617F mutation that was present at diagnosis, we found a novel frame shift mutation in exon 12 of ASXL1 gene (p.S871YfsX5) leading to protein truncation, a genetic event that has also been associated with myeloproliferative neoplasms (MPNs) and AML. We also identified several novel SNVs predicted by SIFT, Provean and PolyPhen-2 algorithms to be deleterious for protein structure. These novel mutations were found in genes relevant for the pathophysiology of MPNs, including the catenin (CTNNA1 R204C, and AIDA K235T), RAS (RREB1 P789T), autophagy (ULK1 R553C) cellular antioxidant defense (GSR S293C), RNA nuclear transport (NUP160 start loss) pathways. Individual sequencing confirmed the presence of these mutations in PB34 and their absence in PB13 (non-leukemic iPSC). We next compared the sequence data from the AP leukemic cell-derived iPSCs (PB34) with the diagnostic data (CML006). This analysis showed only 799 additional somatic SNVs and 96 new short Indels compared with those already evident in the cells present at diagnosis. Only 4 (3 non synonymous and 1 synonymous) SNVs and no Indels were found in exons. These mutations could have appeared during the application of the reprogramming process to the AP leukemic cell-derived iPSCs; none was an obvious contributor to MPN pathophysiology. Finally, we showed that day16 embryoid bodies derived from the PB34 iPSCs contained expected numbers of CD34+ cells (18±11%, n=6) and BCR-ABL-expressing hematopoietic colony-forming cells (CFCs, 143±64 / 105 cells, n= 6). These CFCs showed a slight inhibitory response to imatinib (54±15% colonies obtained in 1 µM IM, n=4) whereas a combination of IM and Pimozide (a STAT5 phosphorylation inhibitor), reduced survival another ∼10-fold. In conclusion, we have provided proof-of-principle results illustrating the potential of iPSC technology in combination with WGS to dissect the clonal evolution of disease progression in CML and develop patient specific drug screens that could build on this data. Disclosures: Turhan: BMS, Novartis: Honoraria, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-29
    Description: Although human pluripotent stem cells (hPSCs) can theoretically be differentiated into any cell type, their ability to generate hematopoietic cells shows a major variability from one cell line to another. The reasons of this variable differentiation potential, which is constant and reproducible in a given hPSC line, are not clearly established. In order to study this phenomenon, we comparatively studied 4 human embryonic stem cell lines (hESC) and 11 human induced pluripotent stem cell (hiPSC) lines using transcriptome assays. These cell lines exhibited a significant variability to generate in vitro hematopoiesis as evaluated by day-16 embryoid body (EB) formation followed by clonogenic (CFC) assays. Four out of 11 iPSC lines (PB6, PB9, PB12.1, and PB14.3) were found to lack any hematopoietic differentiation ability whereas 7 cell lines showed variable hematopoietic potential. Among hESC lines, H9 and CL0 had low H1 and SA01 exhibited high hematopoietic potential using the above assays. Among hESC and hIPSC displaying hematopoietic potential, two sub-groups were further defined based on their hematopoietic CFC efficiency: a group of poor (generation of less than 100 CFC/105 cells, PB4 / PB10 /H9 /CL01), and high hematopoietic competency (more than 120 CFC/105 cells, PB3/ PB6.1 /PB7 /PB13 /PB17 /SA01/H1). Using global miRNome analysis performed at the pluripotency stage, the expression of 754 individual miRNAs was analyzed from 15 hPSC lines in order to explore a potential predictive marker between both sub-groups of pluripotent cells according to their hematopoietic potency. Using this approach, 27 miRNAs out of 754 appeared differentially expressed allowing the identification of a miRNA signature associated with hematopoietic-competency. The hematopoietic competency was associated with down-regulation of miR-206, miR-135b, miR-105, miR-492, miR-622 and upregulation of miR-520a, miR-296, miR-122, miR-515, miR-335. Amongst these, miR-206 harbored the most significant variation (0.04-Fold change). To explore the role of miRNA-206 in this phenomenon, we have generated a miR-206-eFGP-Puro lentiviral vector which was transfected in hESC line H1 followed by puromycin selection. As a control, H1 cell line was transfected with a Arabidopsis thaliana microRNA sequence (ath-miR-159a), which has no specific targets in mammalian cells. The correct expression of the transgenes were evaluated by flow cytometry (using GFP) and q-RT-PCR for miR-206 expression. The hematopoietic potential of H1 cell line and its miR-206-overexpressing counterpart was then tested using standard in vitro assays via d16-EB generation. We found that both CFC numbers and percentage of CD34+ were significantly lower in H1-mir-206-derived day-16 EB cells than in H1-ath- derived day-16 EB cells (p 〈 0.05). Thus, over-expression of miR-206 in this blood-competent hESC appeared to repress its hematopoietic potential at very early stage, since a similar lower CFC efficiency was observed in day-3 EB cells derived from miR-206 overexpressing H1 cell line. We then conducted an integrative bioinformatics analysis on miR-206 predicted target genes. To this end, 773 mRNA target transcripts of the broadly conserved (across vertebrates) miR-1-3p/206 family were identified in the TargetScan database and were integrated into the global transcriptomic analysis performed by microarray on day-16 EB cells. Using supervised ranking product analysis, 62 predicted gene targets of the miR-1-3p/206 family were found to be significantly up-regulated in hematopoietic-competent EB samples including the transcription factors RUNX1 and TAL1. Hierarchical unsupervised clustering, based on this subset of 62 predicted mir-206 target genes, fully discriminated hematopoietic-deficient from hematopoietic-competent cells. In conclusion, miRNA profiling performed at pluripotency stage could be useful to predict the ability to human iPSC to give rise to blood cell progenitors. This work emphasizes for the first time the critical role of the muscle-specific miR-206 in hematopoietic differentiation. Finally, these results suggest that genetic manipulation of hESC/iPSC could be used to enhance their hematopoietic potential and to design protocols for generation of hPSC-derived hematopoietic stem cells with long-term reconstitution ability. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-11-16
    Description: Human ES cell lines represent an invaluable tool of research for the study of normal and pathological development. In this study we asked whether the human ES cell lines currently used for research purposes are derived from single outgrowths using X-linked clonality analysis. Amongst the cell lines tested, the female H9 cell line was informative at the Humara (human androgen receptor) locus by the presence of two CAG repeats allowing distinction of paternal (Xp) and maternal (Xm) X chromosomes. Clonal analysis was performed upon Hpa II digestion of DNA purified from total H9 cells (passages 27–61), single H9 cell clones generated from single cell cloning, single embryoid bodies (EB) (day 4, day 14) as well as from single hematopoietic progenitors. The same analysis was performed after induction of hematopoietic differentiation in liquid cultures in the presence of hematopoietic permissive conditions (co-culture in the presence of OP-9 cell line). Clonality was evaluated by calculating the Relative Corrected Index (RCI) which is the ratio of the intensity of peaks generated by Hpa II-digested and undigested DNA. In several experiments, all passages of H9 cell lines examined ( p27, p28, p31, p61) were found to exhibit a monoclonal pattern with disappearance of the same allele A upon Hpa II digestion (RCI 〉 10). 13 clonal cultures of H9 obtained by single cell cloning exhibited also the same clonal pattern with digestion of the same allele and RCI values between 6–14. Similarly, DNA purified from EB’s at different stages was found to be clonal. In DNA obtained from 75 individual hematopoietic progenitors (CFU-GM, CFU-G), clonal analysis revealed the same clonal pattern in each, with disappearance of the same allele A. However, clonal analysis performed in 10 hematopoietic colonies, revealed unexpectedly, an equal digestion of Humara alleles with RCI 〈 2 (polyclonal pattern). Finally, in two experiments, hematopoietic cells recovered from liquid cultures exhibited an absolute clonal pattern (Total disappearance of the same allele A). Interestingly, quantification of X-Inactivation Specific Transcript (XIST) RNA in H9 and day14 EB’s by RT-PCR did not show any evidence of XIST expression both before and after differentiation. Altogether, our data suggest that XCI has already been initiated in undifferentiated H9 cells and this inactivation is maintained, at least in the Humara locus in the absence of XIST. The monoclonal pattern of the cell line can be due to the fact that H9 ES cell line might have arisen from a limited number of stem cells having undergone XCI at a very early stage, with maintenance of the methylation status at this locus during mesodermal and hematopoietic commitment. Conversely, hematopoietic differentiation might occur from several mesodermal progenitors having inactivated the same X chromosome in H9 at the Humara locus. Despite the fact that hematopoietic progenitors and differentiated hematopoietic cells originating from H9 exhibited also a clonal pattern, a partial reactivation of the inactive X chromosome during hematopoietic differentiation could occur, and may explain the “polyclonal” pattern obtained in 10 CFU-GM analyzed. Overall, X-linked clonality testing could be an important issue before considering the potential clinical applications, in all female hES cell lines.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-16
    Description: Human embryonic stem cells (hES) isolated from the inner cell mass of a blastocyst have the ability to self renew indefinitely while maintaining their pluripotency to differentiate into multiple cell lineages. Therefore, hES represent an important source of cells for perspective cell therapies and serve as an essential tool for fundamental research, specifically for understanding pathophysiological mechanisms of human diseases for the development of novel pharmacological drugs. The generation of hematopoietic stem cells from hES may serve as an alternative source of cells for hematopoietic reconstitution following bone marrow transplantation and an interesting approach to understand early stages of hematopoietic development which are difficult to study in human embryos. Using two different methods, we have differentiated three hES cell lines (SA01, H1 and H9) into hematopoietic cells by generating embryoid bodies and co-culturing on the murine Op9 cell line. In both experimental approaches, we obtain cells expressing CD34 and when cultured in hematopoietic conditions, SA01 and H1 cell lines differentiate into various hematopoietic lineages as demonstrated by BFU-E, CFU-GM and CFU-GEMM colony formation, whereas H9 have almost exclusively granulo-macrophage differentiation. Cells composing these hematopoietic colonies express CD45, CD11b, CD31, CD41 and CD235 and staining with May Grundwald-Giemsa demonstrate neutrophil and erythrocyte morphology. These results demonstrate the capacity of hES to differentiate into mature hematopoietic cells in vitro. Nevertheless, there exist some quantitative and qualitative differences about hematopoietic differentiation between the hES cell lines used. However, we still have to evaluate their capacity to reconstitute hematopoiesis in vivo in an immune deficient mouse model. We will also be interested in developing in vitro methods to expand these hematopoietic precursor cells derived from hES which may be used as a viable source for future cell therapy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-16
    Description: Abstract 3728 The occurrence of JAK2-V617F mutation has been reported during the evolution of several patients with Ph1-positive CML. In all cases where a clonal analysis has been performed, the involvement of two different hematopoietic stem cells (HSC) has been demonstrated, with the presence of two different myeloproliferative disorders (MPDs). The occurrence of the V617F mutation in a leukemic stem cell (LSC) harboring the BCR-ABL rearrangement has not been reported so far. In a 63- year old patient with a diagnosis of high Sokal score Ph1+ CML, the initial therapy with Imatinib led to efficient cytoreduction and complete cytogenetic response but with persistent splenomegaly. Upon disease progression, he was treated successively with IFN-alpha, ARA-C, Dasatinib and Nilotinib with transient responses and persistent splenomegaly. The progressive increase of platelet counts led to the discovery of JAK2-V617F mutation, which appeared to be present from the diagnosis of CML with a progressive increase (40 % at diagnosis up to 70% at the time of the discovery of JAK2 mutation). To determine if BCR-ABL and JAK2 mutation were present in the same cells, a clonogenic assay was performed and single BFU-E's (n=11) were analyzed individually by q-RT-PCR. All 11 BFU-E expressed BCR-ABL at high levels with a mean BCR-ABL/ABL ratio of 157% (Range 91–207 %). The same individual BFU-E also revealed the presence of a heterozygous JAK2-V617F mutation. To generate a HSC model harboring simultaneously these two major molecular events, we have generated induced pluripotent stem cells (iPSC) from leukemic cells using Sendai-virus mediated Oct4, Sox2, Klf4 and c-Myc gene transfer. We have also generated iPSC from non-leukemic (BCR-ABL-negative, JAK2-V617F-negative) endothelial progenitor cells (EPC) obtained from peripheral blood. iPSC generated from both sources expressed pluripotency markers (Tra-1–60, SSEA-3, SSEA-4) and generated teratoma in NOD/SCID mice. In 24 individual leukemic iPSC clones which were amplified, Ph1-chromosome was found to be present in all mitoses and BCR-ABL was highly expressed (Mean ratio 140%). Each iPSC exhibited the same V617F mutation which co-existed in the primary leukemic BFU-E. None of the non-leukemic iPSC expressed BCR-ABL neither V617F. To determine the hematopoietic potential of both iPSC, we have generated day-16 embryoid bodies (EB) followed by induction of hematopoiesis. Day 16 EB's generated variable numbers of CD34+ cells (12–40 %, n=4) and clonogenic potential (25–340 CFC/105 D16-EB) with evidence of growth-factor-independent CFC's. Interestingly, IM and Dasatinib had partial inhibitory effects on CFC activity, but a combination of Pimozide (STAT5 inhibitor) and IM had a major synergistic effect. As neither normal iPSC nor human embryonic stem cells (hESC) are able to generate definitive, long-term hematopoiesis, we have tested the long-term HSC potential of these iPSC in long-term culture initiating cell (LTC-IC) assays as compared to human ESC line H1. In these conditions, leukemic iPSC generated hematopoietic cells with terminal granulocytic and erythroblastic differentiation and gave rise for the first time to an LTC-IC- derived progeny at 6 weeks (200 CFU-C/105 Day-16 EB) whereas in the same time H1-derived cells did not generate any significant LTC-IC potential (3 CFU-C/105 D-16 EB). Interestingly, non-leukemic iPSC generated also hematopoietic cells but exhibited a major genetic instability in culture with appearance after several passages, of a t (5;7) translocation and major deletions/duplications in CGH arrays. To determine a potential upstream molecular event which might be involved at the origin of the occurrence of BCR-ABL and JAK2 mutation in the same HSC, a whole genome sequencing strategy is underway. In conclusion, we report for the first time the occurrence of two major molecular events involved in CML and non-CML MPDs in the same LSC and demonstrate the utility of iPSC modeling to study the earliest HSC involved. These results suggest strongly that the co-existence of BCR-ABL and V617F enables the specification of iPSC towards hematopoieis which could lead to the identification of specific hematopoietic signaling pathways. Finally, clonal analysis of hematopoietic cells in CML patients with demonstration of Jak2V617 mutations is worthwhile to determine the prevalence of the simultaneous occurrence of these two molecular events in the same cell. Disclosures: Turhan: Novartis, Bristol Myers Squibb: Honoraria, Research Funding.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-04-01
    Description: The glycoprotein (Gp) IIb/IIIa integrin, also called CD41, is the platelet receptor for fibrinogen and several other extracellular matrix molecules. Recent evidence suggests that its expression is much wider in the hematopoietic system than was previously thought. To investigate the precise expression of the CD41 antigen during megakaryocyte (MK) differentiation, CD34+ cells from cord blood and mobilized blood cells from adults were grown for 6 days in the presence of stem cell factor and thrombopoietin. Two different pathways of differentiation were observed: one in the adult and one in the neonate cells. In the neonate samples, early MK differentiation proceeded from CD34+CD41− through a CD34−CD41+CD42− stage of differentiation to more mature cells. In contrast, in the adult samples, CD41 and CD42 were co-expressed on a CD34+ cell. The rare CD34+CD41+CD42− cell subset in neonates was not committed to MK differentiation but contained cells with all myeloid and lymphoid potentialities along with long-term culture initiating cells (LTC-ICs) and nonobese diabetic/severe combined immune-deficient repopulating cells. In the adult samples, the CD34+CD41+CD42−subset was enriched in MK progenitors, but also contained erythroid progenitors, rare myeloid progenitors, and some LTC-ICs. All together, these results demonstrate that the CD41 antigen is expressed at a low level on primitive hematopoietic cells with a myeloid and lymphoid potential and that its expression is ontogenically regulated, leading to marked differences in the surface antigenic properties of differentiating megakaryocytic cells from neonates and adults.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...