ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-01-15
    Description: We have recently found that all-trans retinoic acid (ATRA) upregulates thrombomodulin (TM) and downregulates tissue factor (TF) expression in acute myelogenous leukemia (AML) M3 cells (NB4) and acute monoblastic leukemia cells (U937) (Koyama et al, Blood 84:3001, 1994). We have further investigated the effects of ATRA on leukemic cells freshly isolated from patients at diagnosis. Increase of TM antigen was documented in all AML cells: M0 (n = 1), M2 (n = 5), M3 (n = 3), M4 (n = 3), M5 (n = 3), and M6 (n = 1). Decrease of TF antigen was observed in 4 M2, 1 M4, and all M3 and M5 patients. However, no TM and TF antigens were detected in all chronic lymphocytic leukemia cells (n = 3) with or without ATRA treatment. Changes of TM and TF antigen levels were associated with those of TM and TF cofactor levels on the cell surface. A stereoisomer of RA, 9-cis RA, is a high-affinity ligand for the RA receptors (RARs) and the retinoid X receptors, although ATRA and another isomer, 13-cis RA, solely bind to RARs. We have also studied the effects of 9-cis RA and 13-cis RA on the expressions of TM and TF in NB4 and U937 cells. A relatively wide range of 9-cis RA concentrations (0.01 to 1 mumol/L) compared with ATRA was optimal for prolongation of normal plasma-based recalcification time (reduction of cell surface TF activity), decrease of TF antigen, and increase of TM antigen on the surface and in the lysates of NB4 and U937 cells. Western blot analysis under nonreducing conditions showed that both ATRA and 9-cis RA markedly induced the prominent band at 75 kD of TM and reduced the band at 45 kD of TF. Northern blot analysis has shown similar changes of mRNA levels, which indicates that RAs regulate TM and TF expression in leukemic cells at transcriptional levels. Anticoagulant effects of ATRA, ie, upregulation of TM expression and downregulation of TF expression, are applied not only to established cell lines of specific subtypes (M3 and M5) but also to more universal AML (most cases of M3 and M5 and a part of the other types of AML) cells freshly isolated from patients. 9-cis RA may be more effective than ATRA as an inducer of differentiation of AML M3 cells and as an anticoagulant agent for patients with certain types of AML as well.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-07-15
    Description: The effect of recombinant human interleukin-4 (IL-4) on a granulocyte colony-stimulating factor (G-CSF)-dependent human myeloblastic leukemic cell line, OCI-AML1a, was investigated. IL-4 suppressed the clonogenic cell growth in methylcellulose culture, inhibited the uptake of 3H thymidine in a dose-dependent manner at 5 to 100 U/mL, and consequently suppressed the growth of clonogenic cells in short- and long-term suspension cultures. In addition, IL-4 markedly increased the number of adherent cells. These adherent cells were alpha-naphthyl-butyrate (alpha-NB) esterase-positive and showed macrophage-like appearance, increased expression of CD14, CD11b, CD23, and Ia, and significantly decreased clonogenicity. On the other hand, nonadherent cells growing in suspension showed only slight increase in proportion of alpha-NB esterase-positive or monocyte/macrophage-like cells and increased CD23 expression by an addition of IL-4. The clonogenicity of the nonadherent cells was not significantly influenced by IL-4. By addition of the media conditioned by OCI-AML1a cells in the presence of IL-4, the clonogenic cells growth of OCIAML1a cells was suppressed and adherent cells were markedly increased. The suppressive and differentiative effects on OCI/AML1a cells of the conditioned media and IL-4 itself were almost completely abolished by anti-IL-4 antibody. Furthermore, the neutralizing antibodies against transforming growth factor-beta 2 (TGF-beta 2), tumor necrosis factor-alpha (TNF-alpha), or IL-6 did not influence the effect of recombinant IL-4. Taken together, IL-4 was shown to suppress the growth and induce differentiation toward adherent macrophage-like cells of the G-CSF-dependent myeloblastic cell line. The effect of IL-4 may be direct, and not secondary via inducing production of other cytokines such as TGF-beta, TNF-alpha, or IL-6 by leukemic cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-07-15
    Description: The effect of recombinant human interleukin-4 (IL-4) on a granulocyte colony-stimulating factor (G-CSF)-dependent human myeloblastic leukemic cell line, OCI-AML1a, was investigated. IL-4 suppressed the clonogenic cell growth in methylcellulose culture, inhibited the uptake of 3H thymidine in a dose-dependent manner at 5 to 100 U/mL, and consequently suppressed the growth of clonogenic cells in short- and long-term suspension cultures. In addition, IL-4 markedly increased the number of adherent cells. These adherent cells were alpha-naphthyl-butyrate (alpha-NB) esterase-positive and showed macrophage-like appearance, increased expression of CD14, CD11b, CD23, and Ia, and significantly decreased clonogenicity. On the other hand, nonadherent cells growing in suspension showed only slight increase in proportion of alpha-NB esterase-positive or monocyte/macrophage-like cells and increased CD23 expression by an addition of IL-4. The clonogenicity of the nonadherent cells was not significantly influenced by IL-4. By addition of the media conditioned by OCI-AML1a cells in the presence of IL-4, the clonogenic cells growth of OCIAML1a cells was suppressed and adherent cells were markedly increased. The suppressive and differentiative effects on OCI/AML1a cells of the conditioned media and IL-4 itself were almost completely abolished by anti-IL-4 antibody. Furthermore, the neutralizing antibodies against transforming growth factor-beta 2 (TGF-beta 2), tumor necrosis factor-alpha (TNF-alpha), or IL-6 did not influence the effect of recombinant IL-4. Taken together, IL-4 was shown to suppress the growth and induce differentiation toward adherent macrophage-like cells of the G-CSF-dependent myeloblastic cell line. The effect of IL-4 may be direct, and not secondary via inducing production of other cytokines such as TGF-beta, TNF-alpha, or IL-6 by leukemic cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-07-01
    Description: Autocrine growth mechanisms of leukemic blast progenitors in acute myeloblastic leukemia (AML) were investigated. Colony formation of leukemic blast progenitors was observed in 14 of 14 patients tested when purified blast cell fraction depleted of both T cells and monocytes was plated in methylcellulose without any colony-stimulating factor (CSF). However, there existed a minimal cell density required to initiate blast progenitor growth with marked patient-to-patient variation. To clarify the role of cell density on the spontaneous growth of blast progenitors, we tested whether leukemic cells produced and secreted some stimulatory humoral factor(s). Production of colony- stimulating activity (CSA) by blast cells was observed in 17 of 18 patients tested. Following further depletion of monocytes, the CSA levels decreased markedly in 14 patients, indicating that blast cells with monocytoid differentiation were responsible for CSA production. We also confirmed granulocyte colony-stimulating factor (G-CSF) and/or granulocyte macrophage-colony-stimulating factor (GM-CSF) production by leukemic blasts using specific immunologic assays. When leukemic cells were divided into nonadherent nonphagocytic cell fraction and adherent cell fraction, only nonadherent nonphagocytic cells showed clonogenecity and adherent blast cells lacked the colony-forming capacity. The results indicate that there are at least two blast cell subpopulations in AML: one is proliferating subpopulation with self- renewal capacity and the other is supporting subpopulation with functions such as CSF production. The quite intimate relationship between these two blast cell subpopulations in AML may play an important role on the growth of leukemic blast progenitors in vitro.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-07-01
    Description: Autocrine growth mechanisms of leukemic blast progenitors in acute myeloblastic leukemia (AML) were investigated. Colony formation of leukemic blast progenitors was observed in 14 of 14 patients tested when purified blast cell fraction depleted of both T cells and monocytes was plated in methylcellulose without any colony-stimulating factor (CSF). However, there existed a minimal cell density required to initiate blast progenitor growth with marked patient-to-patient variation. To clarify the role of cell density on the spontaneous growth of blast progenitors, we tested whether leukemic cells produced and secreted some stimulatory humoral factor(s). Production of colony- stimulating activity (CSA) by blast cells was observed in 17 of 18 patients tested. Following further depletion of monocytes, the CSA levels decreased markedly in 14 patients, indicating that blast cells with monocytoid differentiation were responsible for CSA production. We also confirmed granulocyte colony-stimulating factor (G-CSF) and/or granulocyte macrophage-colony-stimulating factor (GM-CSF) production by leukemic blasts using specific immunologic assays. When leukemic cells were divided into nonadherent nonphagocytic cell fraction and adherent cell fraction, only nonadherent nonphagocytic cells showed clonogenecity and adherent blast cells lacked the colony-forming capacity. The results indicate that there are at least two blast cell subpopulations in AML: one is proliferating subpopulation with self- renewal capacity and the other is supporting subpopulation with functions such as CSF production. The quite intimate relationship between these two blast cell subpopulations in AML may play an important role on the growth of leukemic blast progenitors in vitro.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...