ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (29)
  • Wiley  (29)
  • American Physical Society (APS)
  • Geosciences  (29)
Collection
  • Articles  (29)
Journal
  • 1
    Publication Date: 2013-09-24
    Description: [1]  High resolution sparker and crustal-scale airgun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of sub-parallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the sea floor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in mid-crustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Longwave Infrared Camera (LIR) onboard Akatsuki first revealed the global structure of the thermal tides in the upper cloud layer of Venus. The data were acquired over three Venusian years, and the analysis was done over the areas from the equator to the mid‐latitudes in both hemispheres and over the whole local time. Thermal tides at two vertical levels were analyzed by comparing data at two different emission angles. Dynamical wave modes consisting of tides were identified; the diurnal tide consisted mainly of Rossby‐wave and gravity‐wave modes, while the semidiurnal tide predominantly consisted of a gravity‐wave mode. The revealed vertical structures were roughly consistent with the above wave modes, but some discrepancy remained if the waves were supposed to be monochromatic. In turn, the heating profile that excites the tidal waves can be constrained to match this discrepancy, which would greatly advance the understanding of the Venusian atmosphere.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-20
    Description: The optical properties of ambient black carbon-containing particles and the composition of their associated coatings were investigated at a downtown site in Toronto, Canada for two weeks in June 2013. The objective was to assess the relationship between black carbon (BC) coating composition/thickness and absorption. The site was influenced by emissions from local vehicular traffic, wildfires in Quebec and transboundary fossil fuel combustion emissions in the United States. Mass concentrations of BC and associated non-refractory coatings were measured using a soot particle aerosol mass spectrometer (SP-AMS), while aerosol absorption and scattering were measured using a photoacoustic soot spectrometer (PASS). Absorption enhancement was investigated both by comparing ambient and thermally denuded PASS absorption data, and by relating absorption data to BC mass concentrations measured using the SP-AMS. Minimal absorption enhancement attributable to lensing at 781 nm was observed for BC using both approaches. However, brown carbon was detected when the site was influenced by wildfire emissions originating in Quebec. BC coating to core mass ratios were highest during this period (~7), and while direct absorption by brown carbon resulted in an absorption enhancement at 405 nm (〉2.0), no enhancement attributable to lensing at 781 nm was observed. The efficiency of BC coating removal in the denuder decreased substantially when wildfire-related organics were present, and may represent an obstacle for future similar studies. These findings indicate that BC absorption enhancement due to lensing is minimal for downtown Toronto, and potentially other urban locations, even when impacted by long range transport events.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-23
    Description: ABSTRACT Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand geothermal systems across the Snake River Plain volcanic province. A series of surface and borehole seismic profiles were obtained to provide insights into volcanic stratigraphy and test the capabilities of engineering-scale seismic imaging in such terranes. The Kimberly site drilled through 1.9 km of mostly rhyolite, with thin sedimentary interbeds in the upper part of the section. The Kimama site drilled through 1.9 km of mostly basalt with sedimentary interbeds at ∼200 m depth and 1700 m depth. The Mountain Home site contained numerous sediment and volcanic rock layers. Downhole and surface vibroseis seismic results suggest sedimentary interbeds at depth correspond with low-velocity, high-temperature zones that relate to reflections on seismic profiles. Our results suggest that eruption flow volumes can be estimated and flow boundaries can be imaged with surface seismic methods using relatively high-fold and wide-angle coverage. High-frequency attenuation is observed at all sites, and this deficit may be countered by acquisition design and a focus on signal processing steps. Separation of surface and body waves was obtained by muting, and the potential for large static effects was identified and addressed in processing. An accurate velocity model and lithology contacts derived from borehole information improved the confidence of our seismic interpretations.
    Print ISSN: 0016-8025
    Electronic ISSN: 1365-2478
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract An up‐to‐date map of the Antarctic Circumpolar Current (ACC) fronts is constructed from the latest version of mean dynamic topography from satellite altimetry, and reveals the narrowest ACC width in the Udintsev Fracture Zone (UFZ), with the strongest concentration of the three major ACC fronts within a limited distance as short as 170 km, about 40% narrower than that at Drake Passage. At 144°W, at the entrance of the UFZ, which lies between the Pacific‐Antarctic Ridge (PAR) and its eastwardly‐offset segment (offset PAR segment), there is a triple confluence of the Subantarctic Front (SAF), Polar Front (PF), and Southern ACC Front. Downstream of this longitude, the SAF progressively meanders northward over the relatively shallow offset PAR segment before channeling through the Eltanin Fracture Zone, thus diverging from the PF which proceeds through the UFZ. In‐situ observations from two recent cruises at 144°W confirm the satellite altimetry‐derived frontal circulation in the UFZ region, and yield a baroclinic transport relative to the bottom of 113 x 106 m3 s‐1, comparable to that through Drake Passage. The hydrographic sections show no Antarctic bottom water colder than 0.2°C. Characteristics of major water masses are described and the implications for their potential downstream modifications at Drake Passage are discussed in terms of the meridional overturning circulation across the ACC. Mesoscale eddy activity with periods shorter than 90 days is predominantly concentrated in the immediate downstream area of the offset PAR segment, suggesting a substantial poleward eddy heat flux there.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Ten percent of all organic carbon (Corg) absorbed by the ocean each year is stored in seagrass‐bearing sediments. The preservation of these carbon stores is considered a vital method to mitigate climate change. Seagrass‐bearing sediments have been correlated with sediment geophysical properties yet have not been related to sediment acoustic properties. For this purpose, sediment cores were collected from a Thalassia testudinum seagrass meadow in South Texas, USA, where geophysical, acoustical, and Corg properties were measured. It is hypothesized that when deposits of Corg adsorb onto mineral surfaces and are stored in pore spaces, compliant layers between grain contacts and the formation of an organic‐rich suspension reduce sediment stiffness. Results from this seagrass meadow demonstrated a strong correlation between sediment P wave modulus and Corg and show promise toward the development of an in situ ultrasonic sediment probe to more rapidly quantify and monitor seagrass carbon stores.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-06
    Description: Volcanic activity at convergent plate margins is localized along lineaments of active volcanoes that focus rising magma generated within the mantle below. In many arcs worldwide, particularly continental arcs, the volcanic front migrates away from the interface of subduction (the trench) over millions of years, reflecting co-evolving surface forcing, tectonics, crustal magma transport and mantle flow. Here we show that extraction of melt from arc mantle and subsequent magmatic thickening of overlying crust and lithosphere can drive volcanic front migration. This processes is consistent with geochemical trends, such as increasing La/Yb, which show that increasing depths of differentiation correlate with arc front migration in continental arcs. Such thickening truncates the underlying mantle flow field, squeezing hot mantle wedge and the melting focus away from the trench while progressively decreasing the volume of melt generated. However, if magmatic thickening is balanced by tectonic extension in the upper plate, a steady crustal thickness is achieved that results in a more stationary arc front with long-lived mantle melting. This appears to be the case for some island arcs. Thus, in combination with tectonic modulation of crustal thickness, magmatic thickening provides a self-consistent model for volcanic arc front migration and the composition of arc magmas.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-09-07
    Description: Solar wind interactions with the surfaces of asteroids and small moons eject atoms and molecules from the uppermost several n m of regolith grains through a process called sputtering. A small fraction of the sputtered species, called secondary ions, leave the surface in an ionized state, and these are diagnostic of the surface composition. Detection of secondary ions using ion mass spectrometry (IMS) provides a useful method of analysis due to low backgrounds and high instrument sensitivities. However, the sputtered secondary ion yield and the atomic composition of the surface are not 1-to-1 correlated. Thus, relative yield fractions based on experimental measurements are needed to convert measured spectra to surface composition. Here, available experimental results are combined with computationally derived solar wind sputtering yields to estimate secondary ion fluxes from asteroid-sized bodies in the Solar System. The Monte Carlo simulation code SDTrimSP is used to estimate the total sputtering yield due to solar wind ion bombardment for a diverse suite of meteorite and lunar soil compositions. Experimentally measured relative secondary ion yields are then used to determine the abundance of refractory species ( M g + , A l + , C a + , F e + ) relative to S i + , and it is shown that relative abundances can be used to distinguish whether a body is primitive or has undergone significant geologic reprocessing. Estimates of the sputtered secondary ion fluxes are used to determine the IMS sensitivity required to adequately resolve major element ratios for nominal orbital geometries.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-11
    Description: The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.
    Print ISSN: 8755-1209
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-02-22
    Description: We analyzed the structure and variability of observed winds and tides in the Antarctica mesosphere and lower thermosphere (MLT) during 2002 major SSW and 2010 minor sudden stratospheric warmings (SSWs). We noted the effect of SSW on the variability of MLT tides for the first time in the southern hemisphere (SH), although it has been well recognized in the northern hemisphere (NH). We utilized the winds measured by Rothera (68°S, 68°W) MF radar (RMFR) and King Sejong Station (62.22°S, 58.78°W) meteor radar (KSS MR) for estimating the tidal components (diurnal, semi-diurnal and ter-diurnal) in the MLT region. The unusual behavior of diurnal tide (DT) and semidiurnal tide (SDT) was observed during 2002. Zonal SDT amplitudes were enhanced up to 27 m/s after 18 days from the associated SSW day. However, the meridional tidal amplitudes of both DT and SDT suddenly decreased during the peak SSW, and SDT amplitudes slightly increased to 18 m/s afterward. In the normal years, SDT amplitude stays below 15 m/s. During 2010 SSW, SDT zonal amplitudes increased up to 40 m/s and 50 m/s at altitudes of 80 km and 90 km, respectively, ~30 days after the associated SSW. Similar but weaker effect is noticed in the meridional components. The ter-diurnal tide does not show any significant variation during the SSW. The two SSWs offered a challenging issue to answer: why tidal amplitudes are enhanced with a delay after the SSW. The reasons for the delay are discussed in accordance with theoretical predictions.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...