ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rhodobacter capsulatus  (2)
  • Springer  (2)
  • American Physical Society (APS)
  • Annual Reviews
  • 1
    ISSN: 1432-072X
    Keywords: Rhodobacter capsulatus ; H2 evolution ; Polysaccharide reserve material ; Biomass production ; nifA/nifB mutants ; Malate metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The production of biomass, polysaccharide storage material and H2 from malate was studied in the wild-type and mutants RdcI, RdcII and RdcI/cII of Rhodobacter capsulatus. The mutants are defective in either copy I, copy II or both copies of the nitrogenase genes nifA and nifB. Stationary phase levels of biomass, polysaccharide and H2 were determined in phototrophic batch cultures grown with 30 mM of d,l-malate and either 2, 5, or 8 mM of ammonium or 7 mM of glutamate. Calculation of the amounts of malate converted into the three products revealed that, at 8 mM of ammonium and 7 mM of glutamate, malate consumption and product formation were balanced. But with decreasing ammonium concentrations malate not converted into biomass was utilized with decreasing efficiency in polysaccharide and H2 formation. This suggests formation of unknown products at the lower ammonium concentrations. Under conditions of optimal N supply, 80% of the malate not used for biomass production was converted by the wild-type and strain RdcII to H2 and CO2. Mutant RdcI exhibited slightly decreased H2 production. The double mutant did not evolve H2 but accumulated increased amounts of polysaccharide. However, the amounts of polysaccharide were lower than should be expected if all of the spare malate, not utilized by the double mutant for H2 production, was converted into storage material. This and incomplete conversion of malate into known products at low ammonium supplies suggests that polysaccharide accumulation does not compete with the process of H2 formation for malate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Rhodobacter capsulatus ; Nitrogen fixation ; Nitrogenase activity ; Nitrogenase expression ; Aerobiosis ; Oxygen ; Light ; Modification of the Fe protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rhodobacter capsulatus was grown chemotrophically in the dark in oxygen-regulated chemostat culture and in the presence of limiting amounts of fixed N. When the oxygen partial pressure was varied, in situ nitrogen fixation occurred only at 1% of air saturation of the medium. By contrast, nitrogenase proteins and their activity measured in the absence of oxygen could be detected up to 30% of air saturation. This revealed that expression of nitrogenase is much less sensitive toward oxygen than the in situ function of the enzyme. At oxygen partial pressures 〉 1% of air saturation, the degree of modification of the Fe protein of nitrogenase was increased. Light was of no stimulatory effect on both the activity and the expression of nitrogenase. This holds true for growth at 1% or 5% of air saturation. At 5% of air saturation, however, high illumination enhanced the inhibitory effect of oxygen on nitrogenase formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...