ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-17
    Description: Rapid development of next generation sequencing technology has enabled the identification of genomic alterations from short sequencing reads. There are a number of software pipelines available for calling single nucleotide variants from genomic DNA but, no comprehensive pipelines to identify, annotate and prioritize expressed SNVs (eSNVs) from non-directional paired-end RNA-Seq data. We have developed the eSNV-Detect, a novel computational system, which utilizes data from multiple aligners to call, even at low read depths, and rank variants from RNA-Seq. Multi-platform comparisons with the eSNV-Detect variant candidates were performed. The method was first applied to RNA-Seq from a lymphoblastoid cell-line, achieving 99.7% precision and 91.0% sensitivity in the expressed SNPs for the matching HumanOmni2.5 BeadChip data. Comparison of RNA-Seq eSNV candidates from 25 ER+ breast tumors from The Cancer Genome Atlas (TCGA) project with whole exome coding data showed 90.6–96.8% precision and 91.6–95.7% sensitivity. Contrasting single-cell mRNA-Seq variants with matching traditional multicellular RNA-Seq data for the MD-MB231 breast cancer cell-line delineated variant heterogeneity among the single-cells. Further, Sanger sequencing validation was performed for an ER+ breast tumor with paired normal adjacent tissue validating 29 out of 31 candidate eSNVs. The source code and user manuals of the eSNV-Detect pipeline for Sun Grid Engine and virtual machine are available at http://bioinformaticstools.mayo.edu/research/esnv-detect/ .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-17
    Description: The prediction of novel pre-microRNA (miRNA) from genomic sequence has received considerable attention recently. However, the majority of studies have focused on the human genome. Previous studies have demonstrated that sensitivity (correctly detecting true miRNA) is sustained when human-trained methods are applied to other species, however they have failed to report the dramatic drop in specificity (the ability to correctly reject non-miRNA sequences) in non-human genomes. Considering the ratio of true miRNA sequences to pseudo-miRNA sequences is on the order of 1:1000, such low specificity prevents the application of most existing tools to non-human genomes, as the number of false positives overwhelms the true predictions. We here introduce a framework (SMIRP) for creating species-specific miRNA prediction systems, leveraging sequence conservation and phylogenetic distance information. Substantial improvements in specificity and precision are obtained for four non-human test species when our framework is applied to three different prediction systems representing two types of classifiers (support vector machine and Random Forest), based on three different feature sets, with both human-specific and taxon-wide training data. The SMIRP framework is potentially applicable to all miRNA prediction systems and we expect substantial improvement in precision and specificity, while sustaining sensitivity, independent of the machine learning technique chosen.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-07
    Description: A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/ .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-29
    Description: Variations in sample quality are frequently encountered in small RNA-sequencing experiments, and pose a major challenge in a differential expression analysis. Removal of high variation samples reduces noise, but at a cost of reducing power, thus limiting our ability to detect biologically meaningful changes. Similarly, retaining these samples in the analysis may not reveal any statistically significant changes due to the higher noise level. A compromise is to use all available data, but to down-weight the observations from more variable samples. We describe a statistical approach that facilitates this by modelling heterogeneity at both the sample and observational levels as part of the differential expression analysis. At the sample level this is achieved by fitting a log-linear variance model that includes common sample-specific or group-specific parameters that are shared between genes. The estimated sample variance factors are then converted to weights and combined with observational level weights obtained from the mean–variance relationship of the log-counts-per-million using ‘voom’. A comprehensive analysis involving both simulations and experimental RNA-sequencing data demonstrates that this strategy leads to a universally more powerful analysis and fewer false discoveries when compared to conventional approaches. This methodology has wide application and is implemented in the open-source ‘limma’ package.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-13
    Description: Insertional mutagenesis screens in mice are used to identify individual genes that drive tumor formation. In these screens, candidate cancer genes are identified if their genomic location is proximal to a common insertion site (CIS) defined by high rates of transposon or retroviral insertions in a given genomic window. In this article, we describe a new method for defining CISs based on a Poisson distribution, the Poisson Regression Insertion Model, and show that this new method is an improvement over previously described methods. We also describe a modification of the method that can identify pairs and higher orders of co-occurring common insertion sites. We apply these methods to two data sets, one generated in a transposon-based screen for gastrointestinal tract cancer genes and another based on the set of retroviral insertions in the Retroviral Tagged Cancer Gene Database. We show that the new methods identify more relevant candidate genes and candidate gene pairs than found using previous methods. Identification of the biologically relevant set of mutations that occur in a single cell and cause tumor progression will aid in the rational design of single and combinatorial therapies in the upcoming age of personalized cancer therapy.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-20
    Description: Recent evidence suggests that many endogenous circular RNAs (circRNAs) may play roles in biological processes. However, the expression patterns and functions of circRNAs in human diseases are not well understood. Computationally identifying circRNAs from total RNA-seq data is a primary step in studying their expression pattern and biological roles. In this work, we have developed a computational pipeline named UROBORUS to detect circRNAs in total RNA-seq data. By applying UROBORUS to RNA-seq data from 46 gliomas and normal brain samples, we detected thousands of circRNAs supported by at least two read counts, followed by successful experimental validation on 24 circRNAs from the randomly selected 27 circRNAs. UROBORUS is an efficient tool that can detect circRNAs with low expression levels in total RNA-seq without RNase R treatment. The circRNAs expression profiling revealed more than 476 circular RNAs differentially expressed in control brain tissues and gliomas. Together with parental gene expression, we found that circRNA and its parental gene have diversified expression patterns in gliomas and control brain tissues. This study establishes an efficient and sensitive approach for predicting circRNAs using total RNA-seq data. The UROBORUS pipeline can be accessed freely for non-commercial purposes at http://uroborus.openbioinformatics.org/ .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-21
    Description: The identification of genes with specific patterns of change (e.g. down-regulated and methylated) as phenotype drivers or samples with similar profiles for a given gene set as drivers of clinical outcome, requires the integration of several genomic data types for which an ‘integrate by intersection’ (IBI) approach is often applied. In this approach, results from separate analyses of each data type are intersected, which has the limitation of a smaller intersection with more data types. We introduce a new method, GISPA (Gene Integrated Set Profile Analysis) for integrated genomic analysis and its variation, SISPA (Sample Integrated Set Profile Analysis) for defining respective genes and samples with the context of similar, a priori specified molecular profiles. With GISPA, the user defines a molecular profile that is compared among several classes and obtains ranked gene sets that satisfy the profile as drivers of each class. With SISPA, the user defines a gene set that satisfies a profile and obtains sample groups of profile activity. Our results from applying GISPA to human multiple myeloma (MM) cell lines contained genes of known profiles and importance, along with several novel targets, and their further SISPA application to MM coMMpass trial data showed clinical relevance.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-14
    Description: Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-27
    Description: We describe here a novel method for integrating gene and miRNA expression profiles in cancer using feed-forward loops (FFLs) consisting of transcription factors (TFs), miRNAs and their common target genes. The dChip-GemiNI (Gene and miRNA Network-based Integration) method statistically ranks computationally predicted FFLs by their explanatory power to account for differential gene and miRNA expression between two biological conditions such as normal and cancer. GemiNI integrates not only gene and miRNA expression data but also computationally derived information about TF–target gene and miRNA–mRNA interactions. Literature validation shows that the integrated modeling of expression data and FFLs better identifies cancer-related TFs and miRNAs compared to existing approaches. We have utilized GemiNI for analyzing six data sets of solid cancers (liver, kidney, prostate, lung and germ cell) and found that top-ranked FFLs account for ~20% of transcriptome changes between normal and cancer. We have identified common FFL regulators across multiple cancer types, such as known FFLs consisting of MYC and miR-15/miR-17 families, and novel FFLs consisting of ARNT, CREB1 and their miRNA partners. The results and analysis web server are available at http://www.canevolve.org/dChip-GemiNi .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-17
    Description: We introduce RNA2DNAlign, a computational framework for quantitative assessment of allele counts across paired RNA and DNA sequencing datasets. RNA2DNAlign is based on quantitation of the relative abundance of variant and reference read counts, followed by binomial tests for genotype and allelic status at SNV positions between compatible sequences. RNA2DNAlign detects positions with differential allele distribution, suggesting asymmetries due to regulatory/structural events. Based on the type of asymmetry, RNA2DNAlign outlines positions likely to be implicated in RNA editing, allele-specific expression or loss, somatic mutagenesis or loss-of-heterozygosity (the first three also in a tumor-specific setting). We applied RNA2DNAlign on 360 matching normal and tumor exomes and transcriptomes from 90 breast cancer patients from TCGA. Under high-confidence settings, RNA2DNAlign identified 2038 distinct SNV sites associated with one of the aforementioned asymetries, the majority of which have not been linked to functionality before. The performance assessment shows very high specificity and sensitivity, due to the corroboration of signals across multiple matching datasets. RNA2DNAlign is freely available from http://github.com/HorvathLab/NGS as a self-contained binary package for 64-bit Linux systems.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...