ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (4)
  • American Physical Society  (1)
  • National Academy of Sciences  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-02-14
    Description: Polyvinyl alcohol (PVA)/carboxyl methyl cellulose sodium (CMC)/Na2CO3 composite films with different contents of Na2CO3 were prepared by blending and solution-casting. The effect of Na2CO3 on the microstructure of PVA/CMC composite film was analyzed by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM). Its macroscopic properties were analyzed by water sorption, solubility, and dielectric constant tests. The results show that the microstructure of PVA/CMC/Na2CO3 composite films was different from that of PVA and PVA/CMC composite films. In addition, compared to PVA and PVA/CMC composite films, the water sorption of PVA/CMC/Na2CO3 composite films relatively increased, the solubility in water significantly decreased, and the dielectric properties significantly improved. All these results indicate that the hydrogen bonding interaction between PVA and CMC increased and the crystallinity of PVA decreased after the addition of Na2CO3. This was also a direct factor leading to increased water sorption, decreased solubility, and enhanced dielectric properties. The reaction mechanism of PVA, CMC, and Na2CO3 is proposed to further evaluate the effect of Na2CO3 on the microstructure and macroscopic properties of PVA/CMC/Na2CO3 composite films.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-09
    Description: DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5′-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a “limited change/induced fit” mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-14
    Description: The serpentine belt drive system is used in the auto industry. To avoid thermal destruction inside the belt drive and improve the thermal fatigue life of pulley materials under a variety of operating conditions, the temperature information for each load case must be determined within only a few seconds. To this end, this paper proposes an advanced thermal model to calculate the temperature distribution of a serpentine belt drive at static state operating conditions in an efficient manner. In this model, using analytical and numerical methods, a set of equations is developed according to the thermal flows and heat exchanges occurring in the system. After calculating the thermal flows of each pulley and the belt temperature, the baseline numerical simulations are modified to output the temperature distribution for each pulley. In this manner, the time-consuming numerical calculations for each pulley are performed only once and then analytically modified to provide the temperature predictions for various designed load cases, which dramatically reduces the computational time while maintaining the accuracy. Furthermore, experiments were performed to obtain the temperature data, and the results exhibited a good agreement with the corresponding calculated results. The proposed model can thus be effectively utilized for several types of belt systems and the material development of pulleys.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-30
    Description: Benthic diatom indices developed in the Europe Union have been widely accepted as indicators of the trophic state and water quality in freshwater ecosystems. In China, most of the benthic diatom-based indices have not been widely tested or evaluated before. For this purpose, the water quality parameters and benthic diatoms community structures at 20 sample sites in the dish lake of Nanjishan Nature Reserve in Poyang Lake were investigated in this study and 18 widely-applied diatom indices were established. The statistical results indicated that most water quality parameters including Total Nitrogen (TN), Total Phosphorus (TP), ammonia nitrogen (NH4+), Chemical Oxygen Demand (COD) and Chlorophyll (Chl) were highly correlated with each other at a confidence level of 0.05. Water quality sampling sites from 8 lakes could be classified into 4 groups based on the integrated comprehensive scores using principal components analysis (PCA). Monitoring sites could also be divided into 4 groups based on clustering analysis with hierarchical methods for diatom dominant species in 20 sampling sites. According to the status of water ecological health recognition and box plot analysis in different water quality groups and diatom dominant species groups, only 3 diatom indices including the Biological Diatom Index (IBD), Specific Pollution Sensitivity Index (IPS) and Louis Leclercq Diatom Index (IDSE) demonstrated good evaluation suitability and good correlation within different water quality grades at the final stage. The above results revealed that IBD, IPS and IDSE were the most suitable diatom indices for the water quality evaluation of the dish lake in the Nanjishan Nature Reserve, Lake Poyang.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-25
    Description: Deep learning methods have been widely used in the field of intelligent fault diagnosis due to their powerful feature learning and classification capabilities. However, it is easy to overfit depth models because of the large number of parameters brought by the multilayer-structure. As a result, the methods with excellent performance under experimental conditions may severely degrade under noisy environment conditions, which are ubiquitous in practical industrial applications. In this paper, a novel method combining a one-dimensional (1-D) denoising convolutional autoencoder (DCAE) and a 1-D convolutional neural network (CNN) is proposed to address this problem, whereby the former is used for noise reduction of raw vibration signals and the latter for fault diagnosis using the de-noised signals. The DCAE model is trained with noisy input for denoising learning. In the CNN model, a global average pooling layer, instead of fully-connected layers, is applied as a classifier to reduce the number of parameters and the risk of overfitting. In addition, randomly corrupted signals are adopted as training samples to improve the anti-noise diagnosis ability. The proposed method is validated by bearing and gearbox datasets mixed with Gaussian noise. The experimental result shows that the proposed DCAE model is effective in denoising and almost causes no loss of input information, while the using of global average pooling and input-corrupt training improves the anti-noise ability of the CNN model. As a result, the method combined the DCAE model and the CNN model can realize high-accuracy diagnosis even under noisy environment.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-21
    Print ISSN: 2469-9950
    Electronic ISSN: 2469-9969
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...