ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • fluorescence  (2)
  • Springer  (2)
  • American Physical Society
  • Blackwell Publishing Ltd
Collection
Publisher
  • Springer  (2)
  • American Physical Society
  • Blackwell Publishing Ltd
Years
  • 1
    ISSN: 1573-5079
    Keywords: fluorescence ; LHC I-680 ; LHC I-730 ; light-harvesting complex I (LHC I) ; PS I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract With the new method of anion exchange perfusion chromatography we have devised an extremely rapid technique to subfractionate spinach Photosystem I into its chlorophyll a containing core complex and various components of the Photosystem I light-harvesting antenna (LHC I). The isolation time for the LHC I subcomplexes following solubilisation of native Photosystem I was reduced from 50 h using traditional density centrifugation procedures down to only 10–25 min by perfusion chromatography. Within this very short period of isolation, LHC I has been obtained as subfractions highly enriched in Lhca2+3 (LHC I-680) and Lhca1+4 (LHC I-730). Moreover, other highly enriched subfractions of LHC I such as Lhca2, Lhca3 and Lhca1+2+4 were obtained where the later two populations have not previously been obtained in a soluble form and without the use of SDS. These various subfractions of the LHC I antenna have been characterised by absorption spectroscopy, 77 K fluorescence-spectroscopy and SDS-PAGE demonstrating their identities, functional intactness and purity. Furthermore, the analyses located a chlorophyll b pool to preferentially transfer its excitation energy to the low energy F735 chromophore, and located specifically the origin of the 730 nm fluorescence to the Lhca4 component. It was also revealed that Lhca2 and Lhca3 have identical light-harvesting properties. The isolated Photosystem I core complex showed high electron transport capacity (1535 μmoles O2 mg Chl−1 h−1) and low fluorescence yield (0.4%) demonstrating its high functional integrity. The very rapid isolation procedure based upon perfusion chromatography should in a significant way facilitate the subfractionation of Photosystem I proteins and thereby allow more accurate functional and structural studies of individual components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: anisotropy ; fluorescence ; long-wavelength chlorophylls ; low temperature spectroscopy ; Photosystem I ; Synechococcus elongatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isolated trimeric Photosystem I complexes of the cyanobacterium Synechococcus elongatus have been studied with absorption spectroscopy and site-selective polarized fluorescence spectroscopy at cryogenic temperatures. The 4 K absorption spectrum exhibits a clear and distinct peak at 710 nm and shoulders near 720, 698 and 692 nm apart from the strong absorption profile located at 680 nm. Deconvoluting the 4 K absorption spectrum with Gaussian components revealed that Synechococcus elongatus contains two types of long-wavelength pigments peaking at 708 nm and 719 nm, which we denoted C-708 and C-719, respectively. An estimate of the oscillator strengths revealed that Synechococcus elongatus contains about 4–5 C-708 pigments and 5–6 C-719 pigments. At 4 K and for excitation wavelengths shorter than 712 nm, the emission maximum appeared at 731 nm. For excitation wavelengths longer than 712 nm, the emission maximum shifted to the red, and for excitation in the far red edge of the absorption spectrum the emission maximum was observed 10–11 nm to the red with respect to the excitation wavelength, which indicates that the Stokes shift of C-719 is 10–11 nm. The fluorescence anisotropy, as calculated in the emission maximum, reached a maximal anisotropy of r=0.35 for excitation in the far red edge of the absorption spectrum (at and above 730 nm), and showed a complicated behavior for excitation at shorter wavelengths. The results suggest efficient energy transfer routes between C-708 and C-719 pigments and also among the C-719 pigments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...