ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LHC I-680  (1)
  • Springer  (1)
  • American Physical Society
  • Blackwell Publishing Ltd
Collection
Publisher
  • Springer  (1)
  • American Physical Society
  • Blackwell Publishing Ltd
Years
  • 1
    ISSN: 1573-5079
    Keywords: fluorescence ; LHC I-680 ; LHC I-730 ; light-harvesting complex I (LHC I) ; PS I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract With the new method of anion exchange perfusion chromatography we have devised an extremely rapid technique to subfractionate spinach Photosystem I into its chlorophyll a containing core complex and various components of the Photosystem I light-harvesting antenna (LHC I). The isolation time for the LHC I subcomplexes following solubilisation of native Photosystem I was reduced from 50 h using traditional density centrifugation procedures down to only 10–25 min by perfusion chromatography. Within this very short period of isolation, LHC I has been obtained as subfractions highly enriched in Lhca2+3 (LHC I-680) and Lhca1+4 (LHC I-730). Moreover, other highly enriched subfractions of LHC I such as Lhca2, Lhca3 and Lhca1+2+4 were obtained where the later two populations have not previously been obtained in a soluble form and without the use of SDS. These various subfractions of the LHC I antenna have been characterised by absorption spectroscopy, 77 K fluorescence-spectroscopy and SDS-PAGE demonstrating their identities, functional intactness and purity. Furthermore, the analyses located a chlorophyll b pool to preferentially transfer its excitation energy to the low energy F735 chromophore, and located specifically the origin of the 730 nm fluorescence to the Lhca4 component. It was also revealed that Lhca2 and Lhca3 have identical light-harvesting properties. The isolated Photosystem I core complex showed high electron transport capacity (1535 μmoles O2 mg Chl−1 h−1) and low fluorescence yield (0.4%) demonstrating its high functional integrity. The very rapid isolation procedure based upon perfusion chromatography should in a significant way facilitate the subfractionation of Photosystem I proteins and thereby allow more accurate functional and structural studies of individual components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...