ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2016-04-01
    Description: Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO2 climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO2 aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOx emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOx–O3–CH4 interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO2 climate impacts—an important metric that informs decision-making.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-01
    Description: Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu–Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m−2 over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1–2 W m−2. The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-01
    Description: Solar flux densities and heating rates predicted by a broadband, multilayer δ-Eddington two-stream approximation are compared to estimates from a Monte Carlo model that uses detailed descriptions of cloud particle phase functions and facilitates locally nonzero net horizontal flux densities. Results are presented as domain averages for 256-km sections of cloudy atmospheres inferred from A-Train satellite data: 32 632 samples for January 2007 between 70°S and 70°N with total cloud fraction C 〉 0.05. The domains are meant to represent grid cells of a conventional global climate model and consist of columns of infinite width across track and Δx ≈ 1 km along track. The δ-Eddington was applied in independent column approximation (ICA) mode, while the Monte Carlo was applied using both Δx → ∞ (i.e., ICA) and Δx ≈ 1 km. Mean-bias errors due to the δ-Eddington’s neglect of phase function details and horizontal transfer, as functions of cosine of solar zenith angle μ0, are comparable in magnitude and have the same signs. With minor dependence on cloud particle sizes, the δ-Eddington over- and underestimates top-of-atmosphere reflected flux density for the cloudy portion of domains by ~10 W m−2 for μ0 〉 0.9 and −3 W m−2 for μ0 〈 0.2; full domain averages are ~8 and −2 W m−2, respectively, given mean C 〉 0.75 for all μ0. These errors are reversed in sign, but slightly larger, for net surface flux densities. The δ-Eddington underestimates total atmospheric absorption by ~2.5 W m−2 on average. Hence, δ-Eddington mean-bias errors for domain-averaged layer heating rates are usually negative but can be positive. Rarely do they exceed ±10% of the mean heating rate; the largest errors are when the sides of liquid clouds are irradiated by direct beams.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...