ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (7)
  • 1
    Publication Date: 2018-05-01
    Description: Episodes of extremely strong northerly winds (known as etesians) during boreal summer can cause hazardous conditions over the Aegean Archipelago (Greece) and represent a threat for the safe design, construction, and operation of wind energy turbines. Here, these extremes are characterized by employing a peak-over-threshold approach in the extended summer season (May–September) from 1989 to 2008. Twelve meteorological stations in the Aegean are used, and results are compared with 6-hourly wind speed data from five ERA-Interim–driven regional climate model (RCM) simulations from the European domain of the Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX). The main findings show that, in the range of wind speeds for the maximum power output of the turbine, the most etesian-exposed stations could operate 90% at a hub height of 80 m. The central and northern Aegean are identified as areas prone to wind hazards, where medium- to high-wind (class II or I according to the International Electrotechnical Committee standards) wind turbines could be more suitable. In the central Aegean, turbines with a cutout wind speed 〉 25 m s−1 are recommended. Overall, RCMs can be considered a valuable tool for investigating wind resources at regional scale. Therefore, this study encourages a broader use of climate models for the assessment of future wind energy potential over the Aegean.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-26
    Description: Reanalysis products represent a valuable source of information for different impact modelling and monitoring activities over regions with sparse observational data. It is therefore essential to evaluate their behavior and their intrinsic uncertainties. In this study, we focus on precipitation over monsoon Asia, a key agricultural region of the world. Four reanalysis datasets are evaluated, namely ERA-Interim, ERA-Interim/Land, AgMerra and JRA-55. APHRODITE and CHIRPS are the two gridded observational datasets used for the evaluation; the latter is based on rain gauge data, while the former on satellite/rain gauge data. Differences in seasonality, moderate-to-heavy precipitation events, daily distribution and drought characteristics are analyzed. Results show remarkable differences between the APHRODITE and CHIRPS observational datasets as well as between these datasets and the reanalyses. AgMerra generally achieves the best performance, but it is not a near real time updated dataset. ERA-ILand shows good spatial performance; but when the interest is on the temporal evolution, JRA-55 is recommended, as it exhibits the most stable temporal behavior. This study shows that the use of reanalyses for impact modelling and monitoring over monsoon Asia requires an accurate evaluation and choices to be tailored to the specific needs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-01
    Description: Accurate and timely drought information is essential to move from postcrisis to preimpact drought-risk management. A number of drought datasets are already available. They cover the last three decades and provide data in near–real time (using different sources), but they are all “deterministic” (i.e., single realization), and input and output data partly differ between them. Here we first evaluate the quality of long-term and continuous climate data for timely meteorological drought monitoring considering the standardized precipitation index. Then, by applying an ensemble approach, mimicking weather/climate prediction studies, we develop Drought Probabilistic (DROP), a new global land gridded dataset, in which an ensemble of observation-based datasets is used to obtain the best near-real-time estimate together with its associated uncertainty. This approach makes the most of the available information and brings it to the end users. The high-quality and probabilistic information provided by DROP is useful for monitoring applications, and may help to develop global policy decisions on adaptation priorities in alleviating drought impacts, especially in countries where meteorological monitoring is still challenging.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-01
    Description: Climate model simulations are currently the main tool to provide information about possible future climates. Apart from scenario uncertainties and model error, internal variability is a major source of uncertainty, complicating predictions of future changes. Here, a suite of statistical tests is proposed to determine the shortest time window necessary to capture the internal precipitation variability in a stationary climate. The length of this shortest window thus expresses internal variability in terms of years. The method is applied globally to daily precipitation in a 200-yr preindustrial climate simulation with the CMCC-CM coupled general circulation model. The two-sample Cramér–von Mises test is used to assess differences in precipitation distribution, the Walker test accounts for multiple testing at grid cell level, and field significance is determined by calculating the Bejamini–Hochberg false-discovery rate. Results for the investigated simulation show that internal variability of daily precipitation is regionally and seasonally dependent and that regions requiring long time windows do not necessarily coincide with areas with large standard deviation. The estimated time scales are longer over sea than over land, in the tropics than in midlatitudes, and in the transitional seasons than in winter and summer. For many land grid cells, 30 seasons suffice to capture the internal variability of daily precipitation. There exist regions, however, where even 50 years do not suffice to sample the internal variability. The results show that diagnosing daily precipitation change at different times based on fixed global snapshots of one climate simulation might not be a robust detection method.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-01
    Description: Instrumental daily series of temperature are often affected by inhomogeneities. Several methods are available for their correction at monthly and annual scales, whereas few exist for daily data. Here, an improved version of the higher-order moments (HOM) method, the higher-order moments for autocorrelated data (HOMAD), is proposed. HOMAD addresses the main weaknesses of HOM, namely, data autocorrelation and the subjective choice of regression parameters. Simulated series are used for the comparison of both methodologies. The results highlight and reveal that HOMAD outperforms HOM for small samples. Additionally, three daily temperature time series from stations in the eastern Mediterranean are used to show the impact of homogenization procedures on trend estimation and the assessment of extremes. HOMAD provides an improved correction of daily temperature time series and further supports the use of corrected daily temperature time series prior to climate change assessment.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-01
    Description: This article addresses the role of large-scale circulation and thermodynamical features in the release of past debris flows in the Swiss Alps by using classification algorithms, potential instability, and convective time scale. The study is based on a uniquely dense dendrogeomorphic time series of debris flows covering the period 1872–2008, reanalysis data, instrumental time series, and gridded hourly precipitation series (1992–2006) over the area. Results highlight the crucial role of synoptic and mesoscale forcing as well as of convective equilibrium on triggering rainfalls. Two midtropospheric synoptic patterns favor anomalous southwesterly flow toward the area and high potential instability. These findings imply a certain degree of predictability of debris-flow events and can therefore be used to improve existing alert systems.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-01
    Description: Sudden changes caused by nonclimatic factors (inhomogeneities) usually affect instrumental time series of climate variables. To perform robust climate analyses based on observations, a proper identification of such changes is necessary. Here, an approach (named the “GAHMDI” method, after its components and purpose) that is based on a genetic algorithm and hidden Markov models is proposed for detection of inhomogeneities caused by changes in the mean and variance. Simulated series and a case study (winter precipitation from a weather station located in Milan, Italy) are set up to compare GAHMDI with existing methodologies and to highlight its features. For the identification of a single changepoint, GAHMDI performs similarly to other methods (e.g., standard normal homogeneity test). However, for the identification of multiple inhomogeneities and changes in variance, GAHMDI returns better results than three widespread methods by avoiding overdetection. For future applications and research in the homogenization of climate datasets (temperature and precipitation) the use of GAHMDI is encouraged, preferably in combination with another detection procedure (e.g., the method of Caussinus and Mestre) when metadata are not available. Since GAHMDI is developed in the generic context of time series segmentation, it can be applied to series of generic variables—for instance, those related to economics, biology, and informatics.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...