ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (6)
Collection
Publisher
  • 1
    Publication Date: 2016-09-01
    Description: ERA-Interim reanalysis data from the past 35 years have been used with a newly developed feature tracking algorithm to identify Indian monsoon depressions originating in or near the Bay of Bengal. These were then rotated, centralized, and combined to give a fully three-dimensional 106-depression composite structure—a considerably larger sample than any previous detailed study on monsoon depressions and their structure. Many known features of depression structure are confirmed, particularly the existence of a maximum to the southwest of the center in rainfall and other fields and a westward axial tilt in others. Additionally, the depressions are found to have significant asymmetry owing to the presence of the Himalayas, a bimodal midtropospheric potential vorticity core, a separation into thermally cold (~−1.5 K) and neutral (~0 K) cores near the surface with distinct properties, and the center has very large CAPE and very small CIN. Variability as a function of background state has also been explored, with land–coast–sea, diurnal, ENSO, active–break, and Indian Ocean dipole contrasts considered. Depressions are found to be markedly stronger during the active phase of the monsoon, as well as during La Niña. Depressions on land are shown to be more intense and more tightly constrained to the central axis. A detailed schematic diagram of a vertical cross section through a composite depression is also presented, showing its inherent asymmetric structure.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-06-01
    Description: The northward-propagating intraseasonal (30–40 day) oscillation (NPISO) between active and break monsoon phases exerts a critical control on summer-season rainfall totals over India. Advances in diagnosing these events and comprehending the physical mechanisms behind them may hold the potential for improving their predictability. While previous studies have attempted to extract active and break events from reanalysis data to elucidate a composite life cycle, those studies have relied on first isolating the intraseasonal variability in the record (e.g., through bandpass filtering, removing harmonics, or empirical orthogonal function analysis). Additionally, the underlying physical processes that previous studies have proposed have varied, both among themselves and with studies using general circulation models. A simple index is defined for diagnosing NPISO events in observations and reanalysis, based on lag correlations between outgoing longwave radiation (OLR) over India and over the equatorial Indian Ocean. This index is the first to use unfiltered OLR observations and so does not specifically isolate intraseasonal periods. A composite NPISO life cycle based on this index is similar to previous composites in OLR and surface winds, demonstrating that the dominance of the intraseasonal variability in the monsoon climate system eliminates the need for more complex methods (e.g., time filtering or EOF analysis) to identify the NPISO. This study is also among the first to examine the NPISO using a long-period record of high-resolution sea surface temperatures (SSTs) from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. Application of this index to those SSTs demonstrates that SST anomalies exist in near quadrature with convection, as suggested by recent coupled model studies. Analysis of the phase relationships between atmospheric fields and SSTs indicates that the atmosphere likely forced the SST anomalies. The results of this lag-correlation analysis suggest that the oscillation serves as its own most reliable—and perhaps only—predictor, and that signals preceding an NPISO event appear first over the Indian subcontinent, not the equatorial Indian Ocean where the events originate.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-02-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-02-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-12-01
    Description: While the Indian monsoon exhibits substantial variability on interannual time scales, its intraseasonal variability (ISV) is of greater magnitude and hence of critical importance for monsoon predictability. This ISV comprises a 30–50-day northward-propagating oscillation (NPISO) between active and break events of enhanced and reduced rainfall, respectively, over the subcontinent. Recent studies have implied that coupled general circulation models (CGCMs) were better able to simulate the NPISO than their atmosphere-only counterparts (AGCMs). These studies have forced their AGCMs with SSTs from coupled integrations or observations from satellite-based infrared sounders, both of which underestimate the ISV of tropical SSTs. The authors have forced the 1.25° × 0.83° Hadley Centre Atmospheric Model (HadAM3) with a daily, high-resolution, observed SST analysis from the United Kingdom National Center for Ocean Forecasting that contains greater ISV in the Indian Ocean than past products. One ensemble of simulations was forced by daily SSTs, a second with monthly means, and a third with 5-day means. The ensemble with daily SSTs displayed significantly greater variability in 30–50-day rainfall across the monsoon domain than the ensemble with monthly mean SSTs, variability similar to satellite-derived precipitation analyses. Individual ensemble members with daily SSTs contained intraseasonal events with a strength, a propagation speed, and an organization that closely matched observed events. When ensemble members with monthly mean SSTs displayed power in intraseasonal rainfall, the events were weak and disorganized, and they propagated too quickly. The ensemble with 5-day means had less intraseasonal rainfall variability than the ensemble with daily SSTs but still produced coherent NPISO-like events, indicating that SST variability at frequencies higher than 5 days contributes to but is not critical for simulations of the NPISO. It is concluded that high-frequency SST anomalies not only increased variance in intraseasonal rainfall but helped to organize and maintain coherent NPISO-like convective events. Further, the results indicate that an AGCM can respond to realistic and frequent SST forcing to generate an NPISO that closely resembles observations. These results have important implications for simulating the NPISO in AGCMs and coupled climate models, as well as for predicting tropical ISV in short- and medium-range weather forecasts.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-04-29
    Description: Severe rainfall events are common in western Peninsular Malaysia. They are usually short and intense, and occasionally cause flash floods and landslides. Forecasting these local events is difficult and understanding the mechanisms of the rainfall events is vital for the advancement of tropical weather forecasting. This study investigates the mechanisms responsible for a local heavy rainfall event on 2 May 2012 that caused flash floods and landslides using both observations and simulations with the limited-area high-resolution Met Office Unified Model (MetUM). Results suggest that previous day rainfalls over Peninsular Malaysia and Sumatra Island influenced the development of overnight rainfall over the Strait of Malacca by low-level flow convergence. Afternoon convection over the Titiwangsa Mountains over Peninsular Malaysia then induced rainfall development and the combination of these two events influenced the development of severe convective storm over western Peninsular Malaysia. Additionally, anomalously strong low-level northwesterlies also contributed to this event. Sensitivity studies were carried out to investigate the influence of the local orography on this event. Flattened Peninsular Malaysia orography causes a lack of rainfall over the central part of Peninsular Malaysia and Sumatra Island and produces a weaker overnight rainfall over the Strait of Malacca. By removing Sumatra Island in the final experiment, the western and inland parts of Peninsular Malaysia would receive more rainfall, as this region is more influenced by the westerly wind from the Indian Ocean. These results suggest the importance of the interaction between landmasses, orography, low-level flow, and the diurnal cycle on the development of heavy rainfall events.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...