ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (5)
Collection
Publisher
  • 1
    Publication Date: 2016-04-26
    Description: One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness because of the lack of global estimates of bedrock depth. Using a 30-arc-s global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude × 1.25° longitude grid cell. The greatest changes in the simulation with variable soil thickness are to baseflow, with the annual minimum generally occurring earlier. Smaller changes are seen in latent heat flux and surface runoff primarily as a result of an increase in the annual cycle amplitude. These changes are related to soil moisture changes that are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies are not strongly affected over most river basins since most basins contain mostly deep soils, but TWS anomalies are substantially different for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature is partially affected by including realistic soil thicknesses resulting from changes in the vertical profile of heat capacity and thermal conductivity. However, the largest changes to soil temperature are introduced by the soil moisture changes in the variable soil thickness simulation. This implementation of variable soil thickness represents a step forward in land surface model development.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-01
    Description: In August 2016, the National Weather Service Office of Water Prediction (NWS/OWP) of the National Oceanic and Atmospheric Administration (NOAA) implemented the operational National Water Model (NWM) to simulate and forecast streamflow, soil moisture, and other model states throughout the contiguous United States. Based on the architecture of the WRF-Hydro hydrologic model, the NWM does not currently resolve channel infiltration, an important component of the water balance of the semiarid western United States. Here, we demonstrate the benefit of implementing a conceptual channel infiltration function (from the KINEROS2 semidistributed hydrologic model) into the WRF-Hydro model architecture, configured as NWM v1.1. After calibration, the updated WRF-Hydro model exhibits reduced streamflow errors for the Walnut Gulch Experimental Watershed (WGEW) and the Babocomari River in southeast Arizona. Model calibration was performed using NLDAS-2 atmospheric forcing, available from the NOAA National Centers for Environmental Prediction (NCEP), paired with precipitation forcing from NLDAS-2, NCEP Stage IV, or local gauge precipitation. Including channel infiltration within WRF-Hydro results in a physically realistic hydrologic response in the WGEW, when the model is forced with high-resolution, gauge-based precipitation in lieu of a national product. The value of accounting for channel loss is also demonstrated in the Babocomari basin, where the drainage area is greater and the cumulative effect of channel infiltration is more important. Accounting for channel infiltration loss thus improves the streamflow behavior simulated by the calibrated model and reduces evapotranspiration bias when gauge precipitation is used as forcing. However, calibration also results in increased high soil moisture bias, which is likely due to underlying limitations of the NWM structure and calibration methodology.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-01
    Description: This study offers a unified formulation of single- and multimoment normalizations of the raindrop size distribution (DSD), which have been proposed in the framework of scaling analyses in the literature. The key point is to consider a well-defined “general distribution” g(x) as the probability density function (pdf) of the raindrop diameter scaled by a characteristic diameter Dc. The two-parameter gamma pdf is used to model the g(x) function. This theory is illustrated with a 3-yr DSD time series collected in the Cévennes region, France. It is shown that three DSD moments (M2, M3, and M4) make it possible to satisfactorily model the DSDs, both for individual spectra and for time series of spectra. The formulation is then extended to the one- and two-moment normalization by introducing single and dual power-law models. As compared with previous scaling formulations, this approach explicitly accounts for the prefactors of the power-law models to yield a unique and dimensionless g(x), whatever the scaling moment(s) considered. A parameter estimation procedure, based on the analysis of power-law regressions and the self-consistency relationships, is proposed for those normalizations. The implementation of this method with different scaling DSD moments (rain rate and/or radar reflectivity) yields g(x) functions similar to the one obtained with the three-moment normalization. For a particular rain event, highly consistent g(x) functions can be obtained during homogeneous rain phases, whatever the scaling moments used. However, the g(x) functions may present contrasting shapes from one phase to another. This supports the idea that the g(x) function is process dependent and not “unique” as hypothesized in the scaling theory.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-01
    Description: Evidence for surface and atmosphere coupling is corroborated in both modeling and observation-based field experiments. Recent advances in high-performance computing and development of convection-permitting regional-scale atmospheric models combined with high-resolution hydrologic models have made modeling of surface–atmosphere interactions feasible for the scientific community. These hydrological models can account for the impacts of the overland flow and subsurface flow components of the hydrologic cycle and account for the impact of lateral flow on moisture redistribution at the land surface. One such model is the Weather Research and Forecasting (WRF) regional atmospheric model that can be coupled to the WRF-Hydro hydrologic model. In the present study, both the uncoupled WRF (WRF-ARW) and otherwise identical WRF-Hydro model are executed for the 2017 and 2018 summertime North American monsoon (NAM) seasons in semiarid central Arizona. In this environment, diurnal convection is impacted by precipitation recycling from the land surface. The goal of this work is to evaluate the impacts that surface runoff and shallow subsurface flow, as depicted in WRF-Hydro, have on surface–atmosphere interactions and convection in a coupled atmospheric simulation. The current work assesses the impact of surface hydrologic processes on 1) local surface energy budgets during the NAM throughout Arizona and 2) the spectral behavior of diurnally driven NAM convection. Model results suggest that adding surface and subsurface flow from WRF-Hydro increases soil moisture and latent heat near the surface. This increases the amount of instability and moisture available for deep convection in the model simulations and enhances the organization of convection at the peak of the diurnal cycle.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-02
    Description: The NOAA National Water Model (NWM), maintained and executed by the NOAA National Weather Service (NWS) Office of Water Prediction, provides operational hydrological guidance throughout the Contiguous United States. Based on the WRF-Hydro model architecture developed by the National Center for Atmospheric Research (NCAR), the NWM was recently modified for semi-arid domains, by permitting it to explicitly resolve infiltration from ephemeral channels into the underlying channel bed as an added model sink term. To analyze the added value of channel infiltration in semi-arid environments, we calibrated NWM v2.1 (with the channel infiltration function) to 56 independent basins in the western CONUS, following identical calibration methods as the pre-operational NWM v2.1 (not including channel infiltration). Calibration of the model consists of two parts, including 1) calibration of channel infiltration only with other parameters set to the calibrated parameters used for pre-operational NWM v2.1 and 2) calibration of all parameters including channel infiltration with settings otherwise equivalent to the calibration of NWM v2.1. The calibrated channel-infiltration enhanced NWM improves predictive skill compared to the control NWM in 85% of evaluated basins, for the calibration period. The current NWM settings for physical processes and the biases of the calibration scheme limit model performance in semi-arid environments. To explore whether channel infiltration paired with an alternative calibration scheme could address these limitations, NWM v2.1 was calibrated with a new objective function in selected basins. We found that this updated objective function could ameliorate model biases in some semi-arid environments.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...