ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-10
    Description: The ability of the Weather Research and Forecasting (WRF) Model simulations to perform climate regionalization studies in an orographically complex region, the Canary Islands, is analyzed. Six different 5-yr simulations were carried out to investigate the sensitivity to several parameterization schemes and to uncertainties in sea surface temperature (SST). The simulated maximum and minimum temperatures, together with the daily rainfall, were compared with observational data. To take into account the climatic differences in this archipelago, observational sites were grouped using a geographical regionalization based on principal component analysis and a clustering technique to group the stations according to their climatic characteristics. The analysis showed that both the microphysics and the boundary layer schemes have a large impact on the simulated precipitation. However, the largest differences were observed when the cumulus parameterization, in the coarser domains, was changed. An analysis of the vertical profiles of the simulated hydrometeors was performed to study the differences revealed by the different simulations. Although the cumulus scheme was not applied in the innermost domain, the total amount of water available in the atmospheric column is modified. Moreover, an average increase of 0.7°C in SST, estimated from phase 5 of the Coupled Model Intercomparison Project (CMIP5) variability, produces changes of the same order as those those obtained with different parameterizations. Temperatures are similarly simulated by the different configurations, except for the case in which an SST increment was introduced. Two configurations (CTRL and LSM-PX) were able to correctly reproduce the studied variables in the Canary Islands, improving the Interim ECMWF Re-Analysis (ERA-Interim) data and showing their abilities for regional-scale climate studies in this archipelago.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-01
    Description: The influence of mineral dust on ultraviolet energy transfer is studied for two different mineralogical origins. The aerosol radiative forcing ΔF and the forcing efficiency at the surface ΔFeff in the range 290–325 nm were estimated in ground-based stations affected by the Saharan and Asian deserts during the dusty seasons. UVB solar measurements were taken from the World Ozone and Ultraviolet Data Center (WOUDC) for four Asian stations (2000–04) and from the Santa Cruz Observatory, Canary Islands (2002–03), under Gobi and Sahara Desert influences, respectively. The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth at 550 nm was used to characterize the aerosol load τ, whereas the aerosol index provided by the Total Ozone Mapping Spectrometer (TOMS) sensor was employed to identify the mineral dust events. The ΔF is strongly affected by the aerosol load, the values found being comparable in both regions during the dusty seasons. Under those conditions, ΔF values as large as −1.29 ± 0.53 W m−2 (τ550 = 0.48 ± 0.24) and −1.43 ± 0.38 W m−2 (τ550 = 0.54 ± 0.26) were reached under Saharan and Asian dust conditions, respectively. Nevertheless, significant differences have been observed in the aerosol radiative forcing per unit of aerosol optical depth in the slant path, τS. The maximum ΔFeff values associated with dust influences were −1.55 ± 0.20 W m−2 τS550−1 for the Saharan region and −0.95 ± 0.11 W m−2 τS550−1 in the Asian area. These results may be used as a benchmark database for establishing aerosol corrections in UV satellite products or in global climate model estimations.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...