ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-08
    Description: The Pacific decadal oscillation (PDO), the dominant year-round pattern of monthly North Pacific sea surface temperature (SST) variability, is an important target of ongoing research within the meteorological and climate dynamics communities and is central to the work of many geologists, ecologists, natural resource managers, and social scientists. Research over the last 15 years has led to an emerging consensus: the PDO is not a single phenomenon, but is instead the result of a combination of different physical processes, including both remote tropical forcing and local North Pacific atmosphere–ocean interactions, which operate on different time scales to drive similar PDO-like SST anomaly patterns. How these processes combine to generate the observed PDO evolution, including apparent regime shifts, is shown using simple autoregressive models of increasing spatial complexity. Simulations of recent climate in coupled GCMs are able to capture many aspects of the PDO, but do so based on a balance of processes often more independent of the tropics than is observed. Finally, it is suggested that the assessment of PDO-related regional climate impacts, reconstruction of PDO-related variability into the past with proxy records, and diagnosis of Pacific variability within coupled GCMs should all account for the effects of these different processes, which only partly represent the direct forcing of the atmosphere by North Pacific Ocean SSTs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-03-01
    Description: Proxy-based paleoclimate reconstructions of tropical sea surface temperature (SST) fields may lead to better constraints of tropical climate variability in climate model projections. In this study, the authors quantify uncertainties associated with two popular SST anomaly reconstruction methods that have been applied over the last millennium. The first reconstruction method exploits the high correlation between the leading modes of variability of global precipitation and SSTs; the second method uses a multiregression model that exploits the multiple modes of covariability between precipitation and SSTs. Regardless of the proxy network density, the first method has skill only in the tropical eastern Pacific and misses some ENSO events. By contrast, the multiregression approach demonstrates high skill throughout the tropical Indo-Pacific region and predicts all ENSO events correctly. The advantage of the multiregression method lies in the second mode of covariability between SSTs and precipitation, which explains nearly 15% of the covariability between the two variables. However, when the period 1950–2000 is considered, the authors find that the nonstationarity in the second mode of covariability between SST and precipitation leads to a significant reduction of skill in the Indian Ocean and the warm pool region. This change suggests that the underlying stationarity assumption common in most climate field reconstruction methods needs to be treated more carefully, particularly in the tropics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-01
    Description: Accurate projections of future temperature and precipitation patterns in many regions of the world depend on quantifying anthropogenic signatures in tropical Pacific climate against its rich background of natural variability. However, the detection of anthropogenic signatures in the region is hampered by the lack of continuous, century-long instrumental climate records. This study presents coral-based sea surface temperature (SST) and salinity proxy records from Palmyra Island in the central tropical Pacific over the twentieth century, based on coral strontium/calcium and the oxygen isotopic composition of seawater (δ18OSW), respectively. On interannual time scales, the Sr/Ca-based SST record captures both eastern and central Pacific warming “flavors” of El Niño–Southern Oscillation (ENSO) variability (R = 0.65 and 0.67, respectively). On decadal time scales, the SST proxy record is highly correlated to the North Pacific gyre oscillation (NPGO) (R = −0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Decadal-scale salinity variations implied by the coral-based δ18OSW record are significantly correlated with the Pacific decadal oscillation (PDO) (R = 0.54). The salinity proxy record is dominated by an unprecedented trend toward lighter δ18OSW values since the mid–twentieth century, implying that a significant freshening has taken place in the region, in line with climate model projections showing enhanced hydrological patterns under greenhouse forcing. Taken together, the new coral records suggest that low-frequency SST and salinity variations in the central tropical Pacific are controlled by different sets of dynamics and that recent hydrological trends in this region may be related to anthropogenic climate change.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...