ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Coastal flows  (5)
  • Nonlinear dynamics  (3)
  • American Meteorological Society  (8)
Collection
Publisher
  • American Meteorological Society  (8)
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1541-1550, doi:10.1175/2008JPO3999.1.
    Description: The response of a zonal channel to a uniform, switched-on but subsequently steady poleward outflow is presented. An eastward coastal current with a Kelvin wave’s cross-shore structure is found to be generated instantly upon initiation of the outflow. The current is essentially in geostrophic balance everywhere except for the vicinity of the outflow channel mouth, where the streamlines must cross planetary vorticity contours to feed the current. The adjustment of this region generates a plume that propagates westward at Rossby wave speeds. The cross-shore structure of the plume varies with longitude, and at any given longitude it evolves with time. The authors show that the plume evolution can be understood both conceptually and quantitatively as the westward propagation of the Kelvin current’s meridional spectrum, with each spectral element propagating at its own Rossby wave group velocity.
    Description: This work was completed at Woods Hole Oceanographic Institution while T.S. Durland was supported by the Ocean and Climate Change Institute. M.A. Spall was supported by NSF Grant OCE-0423975, and J. Pedlosky by NSF Grant OCE-0451086. T.S. Durland acknowledges additional report preparation support from NASA Grant NNG05GN98G.
    Keywords: Coastal flows ; Estuaries ; Currents ; Vorticity ; Plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2776-2784, doi:10.1175/2007JPO3710.1.
    Description: The bottom boundary layer of a stratified flow on a coastal continental shelf is examined using the model of Chapman and Lentz. The flow is driven by a surface stress, uniform in the alongshore coordinate, in a downwelling-favorable direction. The stress diminishes in the offshore direction and produces an Ekman pumping, as well as an onshore Ekman flux. The model yields an interior flow, sandwiched between an upper Ekman layer and a bottom boundary layer. The interior has a horizontal density gradient produced by a balance between horizontal diffusion of density and vertical advection of a background vertical density gradient. The interior flow is vertically sheared and in thermal wind balance. Whereas the original model of Chapman and Lentz considered an alongshore flow that is freely evolving, the present note focuses on the equilibrium structure of a flow driven by stress and discusses the vertical and lateral structure of the flow and, in particular, the boundary layer thickness. The vertical diffusivity of density in the bottom boundary layer is considered so strong, locally, as to render the bottom boundary layer’s density a function of only offshore position. Boundary layer budgets of mass, momentum, and buoyancy determine the barotropic component of the interior flow as well as the boundary layer thickness, which is a function of the offshore coordinate. The alongshore flow has enhanced vertical shear in the boundary layer that reduces the alongshore flow in the boundary layer; however, the velocity at the bottom is generally not zero but produces a stress that locally balances the applied surface stress. The offshore transport in the bottom boundary layer therefore balances the onshore surface Ekman flux. The model predicts the thickness of the bottom boundary layer, which is a complicated function of several parameters, including the strength of the forcing stress, the vertical and horizontal diffusion coefficients in the interior, and the horizontal diffusion in the boundary layer. The model yields a boundary layer over only a finite portion of the bottom slope if the interior diffusion coefficients are too large; otherwise, the layer extends over the full lateral extent of the domain.
    Description: This research was supported in part by NSF Grant OCE-851086.00.
    Keywords: Boundary layer ; Continental shelf ; Coastal flows ; Ekman pumping ; Forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 643-646, doi:10.1175/JPO-D-17-0240.1.
    Description: A simple oceanic model is presented for source–sink flow on the β plane to discuss the pathways from source to sink when transport boundary layers have large enough Reynolds numbers to be inertial in their dynamics. A representation of the flow as a Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy-driven circulations in two-dimensional turbulent flows, indicates that even when the source and sink are aligned along the same western boundary the flow must intrude deep into the interior before exiting at the sink. The existence of interior pathways for the flow is thus an intrinsic property of an inertial circulation and is not dependent on particular geographical basin geometry.
    Description: 2018-09-12
    Keywords: Abyssal circulation ; Bottom currents ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1028–1041, doi:10.1175/JPO-D-12-0159.1.
    Description: The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite boundary, namely downwelling (upwelling) in narrow boundary layers and deformation-scale baroclinic boundary layers with associated strong geostrophic flows. The presence of the island boundary, however, allows the pressure signal to propagate around the island so that the regions of upwelling and downwelling are dynamically connected. In the absence of stratification the island acts as an effective barrier to the Ekman transport. The presence of stratification supports baroclinic boundary currents that provide an advective pathway from one side of the island to the other. The resulting steady circulation is quite complex. Near the island, both geostrophic and ageostrophic velocity components are typically large. The density anomaly is maximum below the surface and, for positive wind stress, exhibits an anticyclonic phase rotation with depth (direction of Kelvin wave propagation) such that anomalously warm water can lie below regions of Ekman upwelling. The horizontal and vertical velocities exhibit similar phase changes with depth. The addition of a sloping bottom can act to shield the deep return flow from interacting with the island and providing mass transport into/out of the surface Ekman layer. In these cases, the required transport is provided by a pair of recirculation gyres that connect the narrow upwelling/downwelling boundary layers on the eastern and western sides of the island, thus directly connecting the Ekman transport across the island.
    Description: This study was supported by the National Science Foundation under Grants OCE-0826656 and OCE-0959381 (MAS), and OCE-0925061 (JP).
    Description: 2013-11-01
    Keywords: Coastal flows ; Ekman pumping/transport ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 163-174, doi:10.1175/JPO-D-17-0161.1.
    Description: The general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans. Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves, long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland, katabatic wind events will force an offshore transport of O(0.4) Sv (1 Sv ≡ 106 m3 s−1) that, when considered for 2 days, will result in an offshore flux of O(5 × 1010) m3.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1533170.
    Description: 2018-07-18
    Keywords: Coastal flows ; Downslope winds ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1334-1339, doi:10.1175/2007JPO3830.1.
    Description: The first-order effects of nonlinearity on the thickness and frictionally driven flux in the Ekman layer are described for the case of an Ekman layer on a solid, flat plate driven by an overlying geostrophic flow as well as the Ekman layer on a free surface driven by a wind stress in the presence of a deep geostrophic current. In both examples, the fluid is homogeneous. Particular attention is paid to the effect of nonlinearity in determining the thickness of the Ekman layer in both cases. An analytical expression for the Ekman layer thickness as a function of Rossby number is given when the Rossby number is small. The result is obtained by insisting that the perturbation expansion of the Ekman problem in powers of the Rossby number remains uniformly valid. There are two competing physical effects. The relative vorticity of the geostrophic currents tends to reduce the width of the layer, but the vertical velocity induced in the layer can fatten or thin the layer depending on the sign of the vertical velocity. The regularized expansion is shown to give, to lowest order, expressions for the flux in agreement with earlier calculations.
    Description: This research was supported in part by NSF Grant OCE-0451086.
    Keywords: Ekman pumping/transport ; Nonlinear dynamics ; Dynamics ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2431-2444, https://doi.org/10.1175/jpo-d-22-0024.1.
    Description: A three-dimensional inertial model that conserves quasigeostrophic potential vorticity is proposed for wind-driven coastal upwelling along western boundaries. The dominant response to upwelling favorable winds is a surface-intensified baroclinic meridional boundary current with a subsurface countercurrent. The width of the current is not the baroclinic deformation radius but instead scales with the inertial boundary layer thickness while the depth scales as the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. Thus, the boundary current scales depend on the stratification, wind stress, Coriolis parameter, and its meridional variation. In contrast to two-dimensional wind-driven coastal upwelling, the source waters that feed the Ekman upwelling are provided over the depth scale of this baroclinic current through a combination of onshore barotropic flow and from alongshore in the narrow boundary current. Topography forces an additional current whose characteristics depend on the topographic slope and width. For topography wider than the inertial boundary layer thickness the current is bottom intensified, while for narrow topography the current is wave-like in the vertical and trapped over the topography within the inertial boundary layer. An idealized primitive equation numerical model produces a similar baroclinic boundary current whose vertical length scale agrees with the theoretical scaling for both upwelling and downwelling favorable winds.
    Description: This research is supported in part by the China Scholarship Council (201906330102). H. G. is financially supported by the China Scholarship Council to study at WHOI for 2 years as a guest student. M.S. is supported by the National Science Foundation Grant OCE-1922538. Z. C. is supported by the ‘Taishan/Aoshan’ Talents program (2017ASTCPES05) the Fundamental Research Funds for the Central Universities (202072001).
    Description: 2023-03-30
    Keywords: Ekman pumping/transport ; Upwelling/downwelling ; Coastal flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...