ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • Molecular Diversity Preservation International  (2)
  • 1
    Publication Date: 2019-02-01
    Description: Building upon our previous seasonal hurricane prediction model, here we develop two statistical models to predict the number of major hurricanes (MHs) and accumulated cyclone energy (ACE) in the North Atlantic basin using monthly data from March to May for an early June forecast. The input data include zonal pseudo–wind stress to the 3/2 power, sea surface temperature in the North Atlantic, and, depending on the magnitude of the Atlantic multidecadal oscillation index, the multivariate ENSO index. From 1968 to 2017, these models have a mean absolute error of 0.96 storms for MHs and 30 units for ACE. When tested over an independent period from 1958 to 1967, the models show a 22% improvement for MHs and 16% for ACE over a no-skill metric based on a 5-yr running average. Both the MH and ACE results show consistent improvements over those produced by three other centers using statistical–dynamical hybrid models and a 5-yr running average prediction over the period 2000–17 for MHs (2003–17 for ACE) in a simulated real-time prediction. These improvements vary from 25% to 37% for MHs and from 15% to 37% for ACE. While most forecasting centers called for a slightly above-average hurricane season in May/June 2017, our models predicted in June 2017 a very active season, in much better agreement with observations.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-22
    Description: To identify whether parent-of-origin effects (POE) of the 15q11.2 BP1-BP2 microdeletion are associated with differences in clinical features in individuals inheriting the deletion, we collected 71 individuals reported with phenotypic data and known inheritance from a clinical cohort, a research cohort, the DECIPHER database, and the primary literature. Chi-squared and Mann-Whitney U tests were used to test for differences in specific and grouped clinical symptoms based on parental inheritance and proband gender. Analyses controlled for sibling sets and individuals with additional variants of uncertain significance (VOUS). Among all probands, maternal deletions were associated with macrocephaly (p = 0.016) and autism spectrum disorder (ASD; p = 0.02), while paternal deletions were associated with congenital heart disease (CHD; p = 0.004). Excluding sibling sets, maternal deletions were associated with epilepsy as well as macrocephaly (p 〈 0.05), while paternal deletions were associated with CHD and abnormal muscular phenotypes (p 〈 0.05). Excluding sibling sets and probands with an additional VOUS, maternal deletions were associated with epilepsy (p = 0.019) and paternal deletions associated with muscular phenotypes (p = 0.008). Significant gender-based differences were also observed. Our results supported POEs of this deletion and included macrocephaly, epilepsy and ASD in maternal deletions with CHD and abnormal muscular phenotypes seen in paternal deletions.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-01
    Description: Statistical, dynamical, and statistical–dynamical hybrid models have been developed in past decades for the seasonal prediction of North Atlantic hurricane numbers. These models’ prediction skills show considerable decadal variability, with particularly poor performance in the past few years. Here, environmental factors that affect hurricane activities are reevaluated to develop a new statistical model for seasonal prediction by 1 June of each year. The predictors include the April–May multivariate ENSO index (MEI) conditioned upon the Atlantic multidecadal oscillation (AMO) index, the power of the average zonal pseudo–wind stress across the North Atlantic in May, and the average March–May tropical Atlantic sea surface temperature. When compared to the actual number of hurricanes each year from 1950 to 2013, this model has a root-mean-square error (RMSE) of 1.91 with a correlation coefficient of 0.71. It shows a 39% improvement in RMSE over a no-skill metric (based on the 5-yr running mean of seasonal hurricane counts) for the period 2001–13. It also outperforms three statistical–dynamical hybrid models [CPC, Colorado State University (CSU), and Tropical Storm Risk (TSR)] by more than 25% for the same period. Furthermore, two approaches are developed to provide the uncertainty ranges around the predicted (deterministic) hurricane number per season that better encompass the range of uncertainty than does the standard method of adding/subtracting a standard deviation of the errors.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-30
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...