ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 402 (1999), S. 644-648 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] As it passes through the Florida Straits, the Gulf Stream consists of two main components: the western boundary flow of the wind-driven subtropical gyre and the northward-flowing surface and intermediate waters which are part of the ‘global conveyor belt’, compensating for the deep ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 31–41, doi:10.1002/palo.20012.
    Description: Available overwash records from coastal barrier systems document significant variability in North Atlantic hurricane activity during the late Holocene. The same climate forcings that may have controlled cyclone activity over this interval (e.g., the West African Monsoon, El Niño–Southern Oscillation (ENSO)) show abrupt changes around 6000 yrs B.P., but most coastal sedimentary records do not span this time period. Establishing longer records is essential for understanding mid-Holocene patterns of storminess and their climatic drivers, which will lead to better forecasting of how climate change over the next century may affect tropical cyclone frequency and intensity. Storms are thought to be an important mechanism for transporting coarse sediment from shallow carbonate platforms to the deep-sea, and bank-edge sediments may offer an unexplored archive of long-term hurricane activity. Here, we develop this new approach, reconstructing more than 7000 years of North Atlantic hurricane variability using coarse-grained deposits in sediment cores from the leeward margin of the Great Bahama Bank. High energy event layers within the resulting archive are (1) broadly correlated throughout an offbank transect of multi-cores, (2) closely matched with historic hurricane events, and (3) synchronous with previous intervals of heightened North Atlantic hurricane activity in overwash reconstructions from Puerto Rico and elsewhere in the Bahamas. Lower storm frequency prior to 4400 yrs B.P. in our records suggests that precession and increased NH summer insolation may have greatly limited hurricane potential intensity, outweighing weakened ENSO and a stronger West African Monsoon—factors thought to be favorable for hurricane development.
    Description: This research was supported by awards from the Division of Ocean Sciences and the Division of Atmospheric and Geospace Sciences of the National Science Foundation to William B. Curry and an NSERC Post-Doctoral Fellowship to Peter van Hengstum.
    Description: 2013-09-14
    Keywords: Hurricanes ; Bahamas ; Cyclones ; Carbonate banks
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 30 (2015): 353–368, doi:10.1002/2014PA002667.
    Description: Approximately synchronous with the onset of Heinrich Stadial 1 (HS1), δ13C decreased throughout most of the upper (~1000–2500 m) Atlantic, and at some deeper North Atlantic sites. This early deglacial δ13C decrease has been alternatively attributed to a reduced fraction of high-δ13C North Atlantic Deep Water (NADW) or to a decrease in the NADW δ13C source value. Here we present new benthic δ18O and δ13C records from three relatively shallow (~1450–1650 m) subpolar Northeast Atlantic cores. With published data from other cores, these data form a depth transect (~1200–3900 m) in the subpolar Northeast Atlantic. We compare Last Glacial Maximum (LGM) and HS1 data from this transect with data from a depth transect of cores from the Brazil Margin. The largest LGM-to-HS1 decreases in both benthic δ13C and δ18O occurred in upper waters containing the highest NADW fraction during the LGM. We show that the δ13C decrease can be explained entirely by a lower NADW δ13C source value, entirely by a decrease in the proportion of NADW relative to Southern Ocean Water, or by a combination of these mechanisms. However, building on insights from model simulations, we hypothesize that reduced ventilation due to a weakened but still active Atlantic Meridional Overturning Circulation also contributed to the low δ13C values in the upper North Atlantic. We suggest that the benthic δ18O gradients above ~2300 m at both core transects indicate the depth to which heat and North Atlantic deglacial freshwater had mixed into the subsurface ocean by early HS1.
    Description: The work was supported by NSF grants OCE13-35191, OCE07-50880, and OCE05-84911 to the Woods Hole Oceanographic Institution.
    Keywords: Heinrich Stadial 1 ; Deglacial d13C minimum ; Atlantic Circulation ; Benthic d18O ; Benthic d13C
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 512–530, doi:10.1002/2016PA003072.
    Description: The carbon isotope composition (δ13C) of seawater provides valuable insight on ocean circulation, air-sea exchange, the biological pump, and the global carbon cycle and is reflected by the δ13C of foraminifera tests. Here more than 1700 δ13C observations of the benthic foraminifera genus Cibicides from late Holocene sediments (δ13CCibnat) are compiled and compared with newly updated estimates of the natural (preindustrial) water column δ13C of dissolved inorganic carbon (δ13CDICnat) as part of the international Ocean Circulation and Carbon Cycling (OC3) project. Using selection criteria based on the spatial distance between samples, we find high correlation between δ13CCibnat and δ13CDICnat, confirming earlier work. Regression analyses indicate significant carbonate ion (−2.6 ± 0.4) × 10−3‰/(μmol kg−1) [CO32−] and pressure (−4.9 ± 1.7) × 10−5‰ m−1 (depth) effects, which we use to propose a new global calibration for predicting δ13CDICnat from δ13CCibnat. This calibration is shown to remove some systematic regional biases and decrease errors compared with the one-to-one relationship (δ13CDICnat = δ13CCibnat). However, these effects and the error reductions are relatively small, which suggests that most conclusions from previous studies using a one-to-one relationship remain robust. The remaining standard error of the regression is generally σ ≅ 0.25‰, with larger values found in the southeast Atlantic and Antarctic (σ ≅ 0.4‰) and for species other than Cibicides wuellerstorfi. Discussion of species effects and possible sources of the remaining errors may aid future attempts to improve the use of the benthic δ13C record.
    Description: U.S. National Science Foundation Grant Numbers: 1634719, 0926735, 1125181; Swiss National Science Foundation Grant Numbers: PP00P2_144811, 200021_163003; Canadian Institute for Advanced Research (CIFAR); Canadian Foundation for Innovation (CFI); Natural Sciences and Engineering Research Council (NSERC)
    Description: 2017-12-03
    Keywords: Carbon ; Isotopes ; Benthic ; Foraminifera ; Calibration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 1013-1034, doi:10.1029/2018PA003408.
    Description: The chemical composition of benthic foraminifera from marine sediment cores provides information on how glacial subsurface water properties differed from modern, but separating the influence of changes in the origin and end‐member properties of subsurface water from changes in flows and mixing is challenging. Spatial gaps in coverage of glacial data add to the uncertainty. Here we present new data from cores collected from the Demerara Rise in the western tropical North Atlantic, including cores from the modern tropical phosphate maximum at Antarctic Intermediate Water (AAIW) depths. The results suggest lower phosphate concentration and higher carbonate saturation state within the phosphate maximum than modern despite similar carbon isotope values, consistent with less accumulation of respired nutrients and carbon, and reduced air‐sea gas exchange in source waters to the region. An inversion of new and published glacial data confirms these inferences and further suggests that lower preformed nutrients in AAIW, and partial replacement of this still relatively high‐nutrient AAIW with nutrient‐depleted, carbonate‐rich waters sourced from the region of the modern‐day northern subtropics, also contributed to the observed changes. The results suggest that glacial preformed and remineralized phosphate were lower throughout the upper Atlantic, but deep phosphate concentration was higher. The inversion, which relies on the fidelity of the paleoceanographic data, suggests that the partial replacement of North Atlantic sourced deep water by Southern Ocean Water was largely responsible for the apparent deep North Atlantic phosphate increase, rather than greater remineralization.
    Description: National Science Foundation (NSF) Grant Numbers: OCE‐0750880, OCE‐1335191, OCE‐1558341, OCE‐1536380; Woods Hole Oceanographic Institution (WHOI) Grant Numbers: 27007592, 27000808
    Keywords: Glacial Atlantic circulation ; Preformed phosphate ; Remineralized phosphate ; Antarctic Intermediate Water ; Nutrient redistribution ; Tropical phosphate maximum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2014-2037, doi:10.1175/2008JPO3895.1.
    Description: An inverse method is used to evaluate the information contained in sediment data for the Atlantic basin during the Last Glacial Maximum (defined here as the time interval 18–21 kyr before present). The data being considered are an updated compilation of the isotopic ratios 18O/16O (δ18O) and 13C/12C (δ13C) of fossil shells of benthic foraminifera (bottom-dwelling organisms). First, an estimate of the abyssal circulation in the modern Atlantic is obtained, which is consistent with (i) climatologies of temperature and salinity of the World Ocean Circulation Experiment, (ii) observational estimates of volume transport at specific locations, and (iii) the statements of a finite-difference geostrophic model. Second, estimates of water properties (δ18O of equilibrium calcite or δ18Oc and δ13C of dissolved inorganic carbon or δ13CDIC) derived from sediment data are combined with this circulation estimate to test their consistency with the modern flow. It is found that more than approximately 80% of water property estimates (δ18Oc or δ13CDIC) are compatible with the modern flow given their uncertainties. The consistency of glacial δ13CDIC estimates with the modern flow could be rejected after two assumptions are made: (i) the uncertainty in these estimates is ±0.1‰ (this uncertainty includes errors in sediment core chronology and oceanic representativity of benthic δ13C, which alone appears better than this value on average); and (ii) δ13CDIC in the glacial deep Atlantic was dominated by a balance between water advection and organic C remineralization. Measurements of δ13C on benthic foraminifera are clearly useful, but the current uncertainties in the distribution and budget of δ13CDIC in the glacial Atlantic must be reduced to increase the power of the test.
    Description: Support for this work comes from the U.S. National Science Foundation.
    Keywords: Abyssal circulation ; Atlantic Ocean ; Paleoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-09-01
    Description: An inverse method is used to evaluate the information contained in sediment data for the Atlantic basin during the Last Glacial Maximum (defined here as the time interval 18–21 kyr before present). The data being considered are an updated compilation of the isotopic ratios 18O/16O (δ18O) and 13C/12C (δ13C) of fossil shells of benthic foraminifera (bottom-dwelling organisms). First, an estimate of the abyssal circulation in the modern Atlantic is obtained, which is consistent with (i) climatologies of temperature and salinity of the World Ocean Circulation Experiment, (ii) observational estimates of volume transport at specific locations, and (iii) the statements of a finite-difference geostrophic model. Second, estimates of water properties (δ18O of equilibrium calcite or δ18Oc and δ13C of dissolved inorganic carbon or δ13CDIC) derived from sediment data are combined with this circulation estimate to test their consistency with the modern flow. It is found that more than approximately 80% of water property estimates (δ18Oc or δ13CDIC) are compatible with the modern flow given their uncertainties. The consistency of glacial δ13CDIC estimates with the modern flow could be rejected after two assumptions are made: (i) the uncertainty in these estimates is ±0.1‰ (this uncertainty includes errors in sediment core chronology and oceanic representativity of benthic δ13C, which alone appears better than this value on average); and (ii) δ13CDIC in the glacial deep Atlantic was dominated by a balance between water advection and organic C remineralization. Measurements of δ13C on benthic foraminifera are clearly useful, but the current uncertainties in the distribution and budget of δ13CDIC in the glacial Atlantic must be reduced to increase the power of the test.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...