ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-23
    Description: The potential temporal shifts in the integrated water vapor (IWV) time series obtained from reprocessed data acquired from global navigation satellite systems (GNSS) were comprehensively investigated. A statistical test, the penalized maximal t test modified to account for first-order autoregressive noise in time series (PMTred), was used to identify the possible mean shifts (changepoints) in the time series of the difference between the GPS IWV and the IWV obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data. The approach allows for identification of the changepoints not only in the GPS IWV time series but also in ERA-Interim. The IWV difference time series formed for 101 GPS sites were tested, where 47 of them were found to contain in total 62 changepoints. The results indicate that 45 detected changepoints were due to the inconsistencies in the GPS IWV time series, and 16 were related to ERA-Interim, while one point was left unverified. After the correction of the mean shifts for the GPS data, an improved consistency in the IWV trends is evident between nearby sites, while a better agreement is seen between the trends from the GPS and ERA-Interim data on a global scale. In addition, the IWV trends estimated for 47 GPS sites were compared to the corresponding IWV trends obtained from nearby homogenized radiosonde data. The correlation coefficient of the trends increases significantly by 38% after using the homogenized GPS data.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-04
    Description: The Regional Research Network „Water in Central Asia“ (CAWa) funded by the German Federal Foreign Office consists of 19 remotely operated multi-parameter stations (ROMPS) in Central Asia. These stations were installed by the German Research Centre for Geosciences (GFZ) in Potsdam, Germany in close cooperation with the Central-Asian Institute for Applied Geosciences (CAIAG) in Bishkek, Kyrgyzstan, the national hydrometeorological services in Uzbekistan and Tajikistan, the Ulugh Beg Astronomical Institute in Tashkent, Uzbekistan, and the Kabul Polytechnic University, Afghanistan. The primary objective of these stations is to support the establishment of a reliable data basis of meteorological and hydrological data especially in remote areas with extreme climate conditions in Central Asia for applications in climate and water monitoring. Up to now, ten years of data are provided for an area of scarce station distribution and with limited open access data which can be used for a wide range of scientific or engineering applications. This dataset provides different types of raw hydrometeorological data such as air temperature, relative humidity, air pressure, wind speed and direction, precipitation, solar radiation, soil moisture and soil temperature as well as snow parameters and river discharge information for selected sites. The data has not undergone any quality control mechanism and should, therefore, be seen as raw data. A visual inspection of the data set has been made and some errors and quality degradation are listed in Zech et al. (2020) but does not claim to be complete. A quality control is strongly recommended by the authors before using the data. Each station data has its own storage directory at the data dissemination server named with the abbreviation (4-letter code) of the station. The data is sampled with a 5-minute interval and stored in hourly files separated by the type of data. These files are then archived as monthly files named with the station abbreviation, type of data, year and month. After one year, these monthly files are further archived to a yearly file. A detailed description for the stations is provided by the Station Exposure Descriptions. Further information about the dataset can be found in Zech et al. (2020). All data is compiled as ASCII data in two different formats which are explained in the documents GITW-SSP-FMT-GFZ-003.pdf (for the stations ALAI, ALA6, and SARY) and CAWA-SSP-FMT-GFZ-006.pdf (for all other stations). Monthly, the data will be dynamically extended as long as data can be acquired from the stations. Additionally, the near real-time data can be displayed and downloaded without any registration from the Sensor Data Storage System (SDSS) hosted at the Central-Asian Institute for Applied Geosciences (CAIAG) in Bishkek, Kyrgyzstan.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: The data set provides GFZ VER13 orbits of altimetry satellites: ERS-1 (August 1, 1991 - July 5, 1996), ERS-2 (May 13, 1995 - February 27, 2006), Envisat (April 12, 2002 - April 8, 2012), TOPEX/Poseidon (September 23, 1992 - October 8, 2005), Jason-1 (January 13, 2002 - July 5, 2013) and Jason-2 (July 5, 2008 - April 5, 2015) derived at the time spans given at the GFZ German Research Centre for Geosciences (Potsdam, Germany) within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software (Zhu et al., 2004) and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the ITRF2014 terrestrial reference frame for all satellites using common, most precise models and standards available and described below. The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1, and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. For Envisat, altimeter crossover data were used additionally at 44 of 764 orbital arcs with gaps in SLR and DORIS data. The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c). Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM for month and DD for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2018) to which these orbits are supplementary material.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: The data set provides GFZ VER11 orbits of altimetry satellites ERS-1 (August 1, 1991 - July 5, 1996), ERS-2 (May 13, 1995 - February 27, 2006), Envisat (April 12, 2002 - April 8, 2012), Jason-1 (January 13, 2002 - July 5, 2013) and Jason-2 (July 5, 2008 - April 5, 2015) TOPEX/Poseidon (September 23, 1992 - October 8, 2005), derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below. The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2017)
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-30
    Description: Long-term tide gauge records provide valuable insights to sea level variations, but interpretation requires an accurate determination of the associated vertical land motion. Within the Tide Gauge Benchmark Monitoring Working Group of the International GNSS Service, we performed a dedicated reprocessing (1994-2020) for GNSS stations co-located with tide gauges. Based on 341 stations the GFZ contribution to the third TIGA reprocessing provides vertical land motion rates for 230 stations at or close to recently active tide gauges. We limited the processing to GPS observations.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...