ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (7)
  • Cambridge University Press  (6)
  • American Meteorological Society  (1)
  • The Oceanography Society  (1)
  • American Meteorological Society (AMS)
Collection
Publisher
  • 1
    Publication Date: 1996-01-01
    Description: At the University of Miami Tritium Laboratory and the University of Washington Quaternary Isotope Laboratory, more than 1000 large-volume Pacific Ocean radiocarbon samples were measured for the WOCE program. Here we present a comprehensive data set, and a brief discussion of our findings.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-01-01
    Description: The World Ocean Circulation Experiment, carried out between 1990 and 1997, provided the most comprehensive oceanic survey of radiocarbon to date. Approximately 10,000 samples were collected in the Pacific Ocean by U.S. investigators for both conventional large volume p counting and small volume accelerator mass spectrometry analysis techniques. Results from six cruises are presented. The data quality is as good or better than previous large-scale surveys. The 14C distribution for the entire WOCE Pacific data set is graphically described using mean vertical profiles and sections, and property-property plots.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-01-01
    Description: AMS radiocarbon results from the World Ocean Circulation Experiment in the Pacific Ocean show dramatic changes in the inventory and distribution of bomb-produced 14C since the time of the GEOSECS survey (8/73–6/74). Near-surface Δ14C values for the eastern portion of both the northern and southern subtropical gyres decreased by 25–50‰, with the change being greater in the north. Equatorial near-surface values have increased by ca. 25‰. Changes in the 250–750-m depth range are dramatically different between the northern and southern basins. The intermediate and mode waters of the southern basin have increased by as much as 75‰ since GEOSECS. Waters of similar density in the northern hemisphere are not exposed to the Southern Ocean circulation regime and are significantly less ventilated, showing maximum changes of ca. 50‰.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-01-01
    Description: Fieldwork for the World Ocean Circulation Experiment (WOCE) radiocarbon program was recently completed. Ca. 9000 samples were collected for analysis using both conventional β-counting techniques and the newer AMS technique. The mean uncertainty for the β analyses is 3‰; for AMS analyses, ca. 4.5‰.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-18
    Description: While the exchange of water through Yucatan Strait is reasonably well known, the age of the deep water in both the Caribbean Sea and Gulf of Mexico is not. We recently measured the radiocarbon (14C) concentrations in deep water in the Gulf of Mexico from a line of stations along 90°30′W. The mean apparent age of water below 900 m, the depth of the Florida Strait sill, was found to be about 740 yr relative to the 1950 14C standard. Depending on how the corrections for biological activity in the upper water are applied, this converts to a “true” age of between 231 ± 28 and 293 ± 74 yr. These ages agree with a previous estimate of the age of the deep water in the Gulf of Mexico based on heat flows, put upper limits on the age of the deep water in the Caribbean Sea, and provide constraints on modelers for the return of deep water from the Gulf of Mexico to the Caribbean. This might be important in the event of a future deep water oil or other chemical spill in the region.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-01
    Description: This study uses potential vorticity and other tracers to identify the pathways of the densest form of Circumpolar Deep Water in the South Pacific, termed “Southwest Pacific Bottom Water” (SPBW), along the 28.2 kg m−3 surface. This study focuses on the potential vorticity signals associated with three major dynamical processes occurring in the vicinity of the Pacific–Antarctic Ridge: 1) the strong flow of the Antarctic Circumpolar Current (ACC), 2) lateral eddy stirring, and 3) heat and stratification changes in bottom waters induced by hydrothermal vents. These processes result in southward and downstream advection of low potential vorticity along rising isopycnal surfaces. Using δ3He released from the hydrothermal vents, the influence of volcanic activity on the SPBW may be traced across the South Pacific along the path of the ACC to Drake Passage. SPBW also flows within the southern limb of the Ross Gyre, reaching the Antarctic Slope in places and contributes via entrainment to the formation of Antarctic Bottom Water. Finally, it is shown that the magnitude and location of the potential vorticity signals associated with SPBW have endured over at least the last two decades, and that they are unique to the South Pacific sector.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-21
    Description: We present a mapped climatology (GLODAPv2.2016b) of ocean biogeochemical variables based on the new GLODAP version 2 data product (Olsen et al., 2016; Key et al., 2015), which covers all ocean basins over the years 1972 to 2013. The quality-controlled and internally consistent GLODAPv2 was used to create global 1°  ×  1° mapped climatologies of salinity, temperature, oxygen, nitrate, phosphate, silicate, total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), pH, and CaCO3 saturation states using the Data-Interpolating Variational Analysis (DIVA) mapping method. Improving on maps based on an earlier but similar dataset, GLODAPv1.1, this climatology also covers the Arctic Ocean. Climatologies were created for 33 standard depth surfaces. The conceivably confounding temporal trends in TCO2 and pH due to anthropogenic influence were removed prior to mapping by normalizing these data to the year 2002 using first-order calculations of anthropogenic carbon accumulation rates. We additionally provide maps of accumulated anthropogenic carbon in the year 2002 and of preindustrial TCO2. For all parameters, all data from the full 1972–2013 period were used, including data that did not receive full secondary quality control. The GLODAPv2.2016b global 1°  ×  1° mapped climatologies, including error fields and ancillary information, are available at the GLODAPv2 web page at the Carbon Dioxide Information Analysis Center (CDIAC; doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-21
    Description: Version 2 of the Global Ocean Data Analysis Project (GLODAPv2) data product is composed of data from 724 scientific cruises covering the global ocean. It includes data assembled during the previous efforts GLODAPv1.1 (Global Ocean Data Analysis Project version 1.1) in 2004, CARINA (CARbon IN the Atlantic) in 2009/2010, and PACIFICA (PACIFic ocean Interior CArbon) in 2013, as well as data from an additional 168 cruises. Data for 12 core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl 4) have been subjected to extensive quality control, including systematic evaluation of bias. The data are available in two formats: (i) as submitted but updated to WOCE exchange format and (ii) as a merged and internally consistent data product. In the latter, adjustments have been applied to remove significant biases, respecting occurrences of any known or likely time trends or variations. Adjustments applied by previous efforts were re-evaluated. Hence, GLODAPv2 is not a simple merging of previous products with some new data added but a unique, internally consistent data product. This compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg −1 in dissolved inorganic carbon, 6 µmol kg −1 in total alkalinity, 0.005 in pH, and 5 % for the halogenated transient tracers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-31
    Description: Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine carbon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean acidification and similar issues related to the carbon cycle. Total alkalinity (A(T)) is one variable of the seawater CO2 chemistry system involved in ocean acidification and frequently measured. We used the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2) to extract relationships among the drivers of the A(T) variability and A(T) concentration using a neural network (NNGv2) to generate a monthly climatology. The GLODAPv2 quality-controlled dataset used was modeled by the NNGv2 with a root-mean-squared error (RMSE) of 5.3 mu mol kg(-1). Validation tests with independent datasets revealed the good generalization of the network. Data from five ocean time-series stations showed an acceptable RMSE range of 3-6.2 mu mol kg(-1). Successful modeling of the monthly A(T) variability in the time series suggests that the NNGv2 is a good candidate to generate a monthly climatology. The climatological fields of A(T) were obtained passing through the NNGv2 the World Ocean Atlas 2013 (WOA13) monthly climatologies of temperature, salinity, and oxygen and the computed climatologies of nutrients from the previous ones with a neural network. The spatiotemporal resolution is set by WOA13: 1 degrees x 1 degrees in the horizontal, 102 depth levels (0-5500 m) in the vertical and monthly (0-1500 m) to annual (1550-5500 m) temporal resolution. The product is distributed through the data repository of the Spanish National Research Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644, Broullon et al., 2019).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Anthropogenic emissions of CO2 to the atmosphere have modified the carbon cycle for more than 2 centuries. As the ocean stores most of the carbon on our planet, there is an important task in unraveling the natural and anthropogenic processes that drive the carbon cycle at different spatial and temporal scales. We contribute to this by designing a global monthly climatology of total dissolved inorganic carbon (TCO2), which offers a robust basis in carbon cycle modeling but also for other studies related to this cycle. A feedforward neural network (dubbed NNGv2LDEO) was configured to extract from the Global Ocean Data Analysis Project version 2.2019 (GLODAPv2.2019) and the Lamont–Doherty Earth Observatory (LDEO) datasets the relations between TCO2 and a set of variables related to the former's variability. The global root mean square error (RMSE) of mapping TCO2 is relatively low for the two datasets (GLODAPv2.2019: 7.2 µmol kg−1; LDEO: 11.4 µmol kg−1) and also for independent data, suggesting that the network does not overfit possible errors in data. The ability of NNGv2LDEO to capture the monthly variability of TCO2 was testified through the good reproduction of the seasonal cycle in 10 time series stations spread over different regions of the ocean (RMSE: 3.6 to 13.2 µmol kg−1). The climatology was obtained by passing through NNGv2LDEO the monthly climatological fields of temperature, salinity, and oxygen from the World Ocean Atlas 2013 and phosphate, nitrate, and silicate computed from a neural network fed with the previous fields. The resolution is 1∘×1∘ in the horizontal, 102 depth levels (0–5500 m), and monthly (0–1500 m) to annual (1550–5500 m) temporal resolution, and it is centered around the year 1995. The uncertainty of the climatology is low when compared with climatological values derived from measured TCO2 in the largest time series stations. Furthermore, a computed climatology of partial pressure of CO2 (pCO2) from a previous climatology of total alkalinity and the present one of TCO2 supports the robustness of this product through the good correlation with a widely used pCO2 climatology (Landschützer et al., 2017). Our TCO2 climatology is distributed through the data repository of the Spanish National Research Council (CSIC; https://doi.org/10.20350/digitalCSIC/10551, Broullón et al., 2020).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...