ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
Collection
Publisher
Years
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Tomographic imaging of the ionosphere is a recently developed technique that uses integrated measurements and computer reconstructions to determine electron densities. The integral of electron density along vertical or oblique paths is obtained with radio transmissions from low-earth-orbiting (LEO) satellite transmitters to a chain of receivers on the earth's surface. Similar measurements along horizontal paths can be made using transmissions from Global Position System (GPS) navigation satellites to GPS receivers on LEO spacecraft. Also, the intensities of extreme ultraviolet (EUV) emissions can be measured with orbiting spectrometers. These intensities are directly related to the integral of the oxygen ion and electron densities along the instrument line of sight. Two-dimensional maps of the ionospheric plasma are produced by analyzing the combined radio and EUV data using computerized ionospheric tomography (CIT). Difficulties associated with CIT arise from the nonuniqueness of the reconstructions, owing to limited angle measurements or nonoptimal receiver location. Improvements in both reconstruction algorithms and CIT measurement systems are being implemented to overcome these difficulties. New imaging systems being developed employ CIT for large area mapping of the plasma densities in the ionosphere. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 2912-2916 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe a silicon anode with integrated electronics for use in photon-counting microchannel-plate (MCP) imaging detectors. Very-large-scale integrated techniques using a 2 μm complementary metal–oxide–semiconductor (CMOS) process allow a passive-anode region, which collects charge from the MCPs, to be surrounded by an active event-processing region. The anode region is made from a rectangular array of pads that are formed using the metal interconnect layers of the CMOS process. Individual pads are electrically connected to form isolated arrays of rows and columns; each row terminates at a well of one charge-coupled device (CCD) register, and each column terminates at a well of a second orthogonal CCD register. The distribution of charge within each register is used to encode the charge-cloud coordinates. A two-dimensional prototype anode was constructed with 128×80 pixels spaced at 50 μm intervals; the anode readout rate is 31 250 Hz. Subpixel centroiding techniques can be employed to reduce the number of pixels that must be read for a given resolution. We envision a rugged, compact, low-power, and low-mass single-substrate imaging anode with a direct (x,y) digital interface. The design offers large array formats with inherent pixel linearity, orthogonality, and stability. An identified upgrade path promises orders-of-magnitude increases in speed (up to 106 photons s−1) and dynamic range, while maintaining large pixel count (〉4000×4000) and MCP pore-limited resolution (〈8 μm). © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...