ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 3266-3277 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Deep-level photoluminescence (PL) studies were performed on Si-doped, metal organic chemical vapor deposition grown AlxGa1−xAs as a function of the most important growth parameters. The SiH4 input mole fraction, the V/III ratio, and the Al fraction were varied over a wide range, resulting in net charge carrier concentrations n ranging between 1.8×1016 and 4.5×1018 cm−3, Hall mobilities μH between 220 and 2400 cm2/V s, and a solid Al fraction x between 0 and 0.72. Two novel PL emissions for AlxGa1−xAs in the energy range of 1.05–1.35 eV were recorded. By a systematic analysis of the growth conditions these emissions were attributed to SiGa–SiAs and SiGa–VGa complexes. The behavior of the broad PL emission at 0.8 eV as a function of the growth parameters was studied systematically. It was demonstrated that this emission is not related to the DX center. Instead, there are strong indications that it should be attributed to an internal transition within a native, or oxygen-related defect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 3278-3285 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The photoluminescence and electrical behavior of Si-doped AlxGa1−xAs has been investigated on various GaAs substrate orientations viz. (100)2°(110), (111)Ga, and (110). The growth has been performed by metalorganic chemical vapor deposition with a systematic variation of the silane input mole fraction, the V/III ratio and the aluminum fraction. It is found that the (110) layers show an abnormal electrical behavior especially in carrier concentration and mobility. On these layers also two new PL peaks have been found. By correlating all possible pair defects with the peaks as a function of the experimental conditions, these two peaks could be assigned to originate from a VAs-AsGa complex and a VAs-SiAs or VAs-SiGa complex. The abnormal electrical results for (110) can be explained by the presence of these complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogenated amorphous silicon has been prepared at a plasma excitation frequency in the very-high-frequency band at 70 MHz with the glow discharge technique at substrate temperatures between 280 and 50 °C. The structural properties have been studied using hydrogen evolution, elastic recoil detection analysis, and infrared spectroscopy. The films were further characterized by dark and photoconductivity and by photothermal deflection spectroscopy. With respect to films prepared at the conventional frequency of 13.56 MHz considerable differences concerning the electronic and structural properties are observed as the substrate temperature is decreased from 280 to 50 °C. Down to a substrate temperature of 150 °C the electronic film properties change only a little and the total hydrogen content cH and the degree of microstructure that can be directly correlated to cH increase only moderately. Below 150 °C the electronic properties deteriorate in the usual manner but still the total hydrogen content does not exceed 21 at. % even at a substrate temperature of 50 °C. It is argued that the influence of the higher excitation frequency on the plasma and on the growth kinetics plays a key role in this context by allowing a highly effective dissociation of the process gas with the maximum ion energies remaining at low levels. It is concluded that deposition processes at higher excitation frequencies can have important technological implications by allowing a decrease of the deposition temperature without losses in the material quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1113-1124 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 9 (1999), S. 183-194 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We consider the design criteria of a chemical mixing device based on a chaotic flow, with an emphasis on the steady-state devices. The merit of a reactor, defined as the Q-factor, is related to the physical dimension of the device and the molecular diffusivity of the reactants through the local Lyapunov exponents of the flow. The local Lyapunov exponent can be calculated for any given flow field and it can also be measured in experimental situations. Easy-to-compute formulae are provided to estimate the Q-factor given either the exact spatial dependence of the local Lyapunov exponent or its probability distribution function. The requirements for optimization are made precise in the context of local Lyapunov exponents. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 11 (1999), S. 1418-1434 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The advection-diffusion equation is studied via a global Lagrangian coordinate transformation. The metric tensor of the Lagrangian coordinates couples the dynamical system theory rigorously into the solution of this class of partial differential equations. If the flow has chaotic streamlines, the diffusion will dominate the solution at a critical time, which scales logarithmically with the diffusivity. The subsequent rapid diffusive relaxation is completed on the order of a few Lyapunov times, and it becomes more anisotropic the smaller the diffusivity. The local Lyapunov time of the flow is the inverse of the finite time Lyapunov exponent. A finite time Lyapunov exponent can be expressed in terms of two convergence functions which are responsible for the spatio-temporal complexity of both the advective and diffusive transports. This complexity gives a new class of diffusion barrier in the chaotic region and a fractal-like behavior in both space and time. In an integrable flow with shear, there also exist fast and slow diffusion. But unlike that in a chaotic flow, a large gradient of the scalar field across the KAM surfaces can be maintained since the fast diffusion in an integrable flow is strictly confined within the KAM surfaces. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 1796-1803 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of δf particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 8 (1998), S. 688-696 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Converting a continuous signal into a multisymbol stream is a simple method of data compression which preserves much of the dynamical information present in the original signal. The retrieval of selected types of information from symbolic data involves binary operations and is therefore optimal for digital computers. For example, correlation time scales can be easily recovered, even at high noise levels, by varying the time delay for symbolization. Also, the presence of periodicity in the signal can be reliably detected even if it is weak and masked by a dominant chaotic/stochastic background. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 1864-1868 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Barium-filled skutterudites BayCo4Sb12 with an anomalously large filling fraction of up to y=0.44 have been synthesized. The lattice parameters increase linearly with Ba content. Magnetic susceptibility data show that Ba0.44Co4Sb12 is paramagnetic, which implies that some of the Co atoms in BayCo4Sb12 have acquired a magnetic moment. The presence of the two different valence states of Co (Co3+ and Co2+) leads to the anomalously large barium filling fraction even without extra charge compensation. All samples show n-type conduction. The electrical conductivity increases with increasing the Ba filling fraction. The lattice thermal conductivity of BayCo4Sb12 is significantly depressed as compared to unfilled Co4Sb12. The dimensionless thermoelectric figure of merit, ZT, increases with increasing temperature reaching a maximum value of 1.1 for Ba0.24Co4Sb12 at 850 K. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 718-726 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Based on our previous Monte Carlo simulation model of electron interactions with solids, including cascade secondary electron production, in which an optical dielectric function was used to describe electron energy loss and the associated secondary electron excitation, we have systematically investigated secondary electron generation and emission for 19 metals. The calculated secondary yield curve for primary beam energy ranging from 100 eV to 2 keV was found to correspond with the experimental universal curve. The dependence of the secondary yield on the work function was studied numerically, leading to a remarkable scattered deviation from Baroody's relationship. This deviation shows that the secondary yield relates to different aspects of behavior by electrons in a metal, such as the cascade production process, the stopping power and specific energy loss mechanism for a sample, and the dependence on the electron density of states. The results provide an explanation for the scattered data on the experimental yield versus the work function. The calculations indicate that the characteristic energy loss of primaries may result in a corresponding feature in the energy distribution of secondaries. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...