ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 71 (1992), S. 403-409 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Infrared spectroscopy and thermal effusion have been used to study the nature of the silicon-hydrogen bond in sputtered a-Si:H alloys. The samples were prepared by reactive sputtering under different deposition conditions to produce varying hydrogen contents. The Fourier transform infrared spectra have been analyzed using the simplex algorithm to deconvolute the component peaks. This technique has been applied separately to both the stretching- and bending-mode regions of the infrared absorption spectra. Studies have been made of the effects of annealing on both the infrared and the thermal evolution spectra of hydrogen. The results indicate a redistribution and transformation of different bonding configurations due to annealing. A comparative study is presented of the thermal-effusion spectra for partial and total degassing with the infrared spectra taken before and after each phase of degassing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-04
    Description: Atmospheric pressure H 2 O / O 2 gliding arc plasma is generated by a 88   Hz , 6   kV AC power supply. The properties of the produced plasma are investigated by optical emission spectroscopy. The relative intensity, rotational, vibrational, excitation temperatures and electron density are studied as a function of applied voltage, electrode spacing, and oxygen flow rate. The rotational and vibrational temperatures are determined simulating the OH ( A 2 Σ + ( v ″ = 0 ) → X 2 Π ( v ′ = 0 ) ) bands with the aid of LIFBASE simulation software. The excitation temperature is obtained from the CuI transition taking non-thermal equilibrium condition into account employing intensity ratio method. The electron density is approximated from the   H α Stark broadening using the Voigt profile fitting method. It is observed that the rotational and vibrational temperatures decrease with increasing electrode spacing and O 2 flow rate, but increase with the applied voltage. The excitation temperature is found to increase with increasing applied voltage and O 2 flow rate, but decrease with electrode spacing. The electron density increases with increasing applied voltage while it seems to be in a downward trend with increasing electrode spacing and O 2 flow rate.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-27
    Description: We propose a structure that can be used for enhanced single molecule detection using surface plasmon coupled emission (SPCE). In the proposed structure, instead of a single metal layer on the glass prism of a typical SPCE structure for fluorescence microscopy, a metal-dielectric-metal structure is used. We theoretically show that the proposed structure significantly decreases the excitation volume of the fluorescently labeled sample, and simultaneously increases the peak SPCE intensity and SPCE power. Therefore, the signal-to-noise ratio and sensitivity of an SPCE based fluorescence microscopy system can be significantly increased using the proposed structure, which will be helpful for enhanced single molecule detection, especially, in a less pure biological sample.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-09
    Description: The Korteweg-de Vries Burgers ( KdVB ) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-13
    Description: We propose a strategy of using a stochastic optimization technique, namely, simulated annealing to design optimum laser pulses (both IR and UV) to achieve greater fluxes along the two dissociating channels (O 18 + O 16 O 16 and O 16 + O 16 O 18 ) in O 16 O 16 O 18 molecule. We show that the integrated fluxes obtained along the targeted dissociating channel is larger with the optimized pulse than with the unoptimized one. The flux ratios are also more impressive with the optimized pulse than with the unoptimized one. We also look at the evolution contours of the wavefunctions along the two channels with time after the actions of both the IR and UV pulses and compare the profiles for unoptimized (initial) and optimized fields for better understanding the results that we achieve. We also report the pulse parameters obtained as well as the final shapes they take.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-01
    Description: The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-13
    Description: We show that a silicon thin-film photovoltaic structure with silicon strips on the top and grooves on the silver back contact layer can absorb incident solar energy over a broad spectral range. The silicon strips on the top scatter the incident light and significantly help couple to the photonic modes in the smaller wavelength range. The grooves on the silver back contact layer both scatter the incident light and help couple to the photonic modes and resonant surface plasmon polaritons. We find an increase of ∼46% in total integrated solar absorption in the proposed strip-loaded structure compared to that in a planar thin film structure of same dimensions. The proposed structure offers simpler fabrication compared to similar plasmonic-inspired designs.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-18
    Description: Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is 〉9% of that of a structure without the intermediate metal layer.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-21
    Description: We have developed a comprehensive model of gain recovery due to unipolar electron transport after a short optical pulse in quantum cascade lasers (QCLs) that takes into account all the participating energy levels, including the continuum, in a device. This work takes into account the incoherent scattering of electrons from one energy level to another and quantum coherent tunneling from an injector level to an active region level or vice versa. In contrast to the prior work that only considered transitions to and from a limited number of bound levels, this work include transitions between all bound levels and between the bound energy levels and the continuum. We simulated an experiment of S. Liu et al. , in which 438-pJ femtosecond optical pulses at the device's lasing wavelength were injected into an I n 0.653 Ga 0.348 As / In 0.310 Al 0.690 As QCL structure; we found that approximately 1% of the electrons in the bound energy levels will be excited into the continuum by a pulse and that the probability that these electrons will be scattered back into bound energy levels is negligible, ∼ 10 − 4 . The gain recovery that is predicted is not consistent with the experiments, indicating that one or more phenomena besides unipolar electron transport in response to a short optical pulse play an important role in the observed gain recovery.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-10-20
    Description: Being a direct and wide bandgap semiconductor, zinc oxide is a suitable material for various optoelectronic applications. These applications require tuning and controlling over the electrical and optical properties of zinc oxide films. In this work, zinc oxide thin films were prepared by a solution method that led to oriented crystal growth along (002) plane. The zinc oxide thin films were treated with oxygen, hydrogen, and nitrogen plasmas. The films were characterized to reveal the effects of plasma treatments on transmittance, crystallinity, carrier density, carrier mobility, and electrical resistivity. Oxygen plasma treatment improved the crystallinity of the zinc oxide thin film without affecting the film's transmittance. Hydrogen plasma treatments were found very effective in improving the electrical conductivity sacrificing the film's transmittance. Nitrogen plasma treatment led to improved electrical conductivity without compromising the crystallinity and optical transmittance. Sequential oxygen, hydrogen, and nitrogen plasma treatments significantly reduced the resistivity of zinc oxide thin films by over two orders and maintained the transmittance close to the as-deposited films of ∼80% in visible wavelength range. This is the first work on the improvement of conductivity of solution-based zinc oxide films using the plasma treatment.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...