ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-15
    Description: The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmed by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-23
    Description: Influences of external current drive on neoclassical tearing modes are studied numerically with a set of compressible magnetohydrodynamics equations. By considering the effects of driven current parameters and its deposition timing, and by examining the relationship between driven current and the missing bootstrap current, the basic requirements of deposition width and external current density for effectively suppressing neoclassical tearing modes are investigated. When the driven current density is able to compensate the missing bootstrap current and the deposition region is comparable with the saturated island, the suppression results are notable. Meanwhile, the pre-emptive strategy of current deposition reported experimentally is also evaluated, and the results agree with the experimental ones that early current deposition can enhance suppression effectiveness greatly. In addition, the deficiencies of continuous driven current are discussed when the plasma rotation has been taken into account, and the application of modulated current drive, which is synchronized in phase with the rotating island, can restore the stabilizing role under some conditions. The favorable parameters of modulation such as duty cycle are also addressed.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...