ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (1)
Collection
Years
  • 1
    Publication Date: 2016-06-17
    Description: Ejected plasma has been widely applied to the discharge process of gas spark switches as a trigger technology, and the development process of ejected plasma has a direct and important effect on the discharge characteristics of gas switches. In this paper, both the injection characteristics and space-time evolution of ejected plasma for the triggering of gas spark switch with different stored energies, pulse polarities, and pressures are studied. The discharge characteristics and breakdown process of a gas switch ignited by ejected plasma under different working coefficients are also discussed briefly. The results show that stored energy has significant influence on the characteristics of ejected plasma. With the increase of stored energy, the propulsion mode of ejected plasma in the axial direction transforms from “plasmoid” to “plasma flow,” and the distribution of the ejected plasma goes through “cloud,” “core-cloud,” and “branch” in sequence. The velocity of ejected plasma under negative pulse polarity is obviously higher than that under positive pulse polarity, especially at the very beginning time. The radial dimensions of ejected plasma under two kinds of pulse polarities follow the similar varying pattern over time, which increase first and then decrease, assuming an inverted “U”-shaped curve. With the increase of pressure, the velocity of ejected plasma significantly decreases and the “branch” channels droop earlier. Applying the ejected plasma to the triggering of a gas switch, the switch can be triggered reliably in a much wide working coefficient range of 10%–90%. With the increase of working coefficient, the breakdown process of the switch translates from slow working mode to fast working mode, and the delay time reduces from tens of μ s to hundreds of ns.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...