ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 1057-1059 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The uncertainties inherent in the normalization of subgap photoconductivity spectra to the optical absorption spectra α(hv) in a-Si:H based films have been addressed. An analysis is presented which is based on optical transitions of constant dipole matrix element between parabolic distributions of extended states and exponential distributions of localized tail states. This analysis has been used to normalize the two sets of results accurately, as verified by photothermal deflection spectroscopy measurements, and is shown to be useful in the commonly encountered cases, in which the two spectra do not overlap over an extended region. Improved quantitative fits of α(hv), for photon energy from ∼1.5 to 2.4 eV, obtained on different a-Si:H based films indicate that the localized exponential band tail regions extend ∼60–70 meV above the optical gap. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 56 (1990), S. 2448-2450 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The thickness dependence of the subgap optical absorption in plasma-deposited hydrogenated amorphous silicon is carefully studied by photothermal deflection spectroscopy. The deep-level defect concentration decays from the top surface into the bulk where it approaches the thermal equilibrium defect density. This defect profile is interpreted in terms of the annealing, during growth, of growth-induced surface defects. It is also shown that this defect profile is compatible with the known growth-temperature dependence of the defect density in amorphous silicon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 60 (1992), S. 1462-1464 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We compare experimental data for the saturated light-induced defect density Nsat in hydrogenated amorphous silicon with results obtained by a quasi-equilibrium model. If the model draws on a limited pool of defects the results agree with the experimental data, but if the model relies on the conversion of valence-band-tail states they do not. The model reproduces all three regimes of Nsat: a constant, maximum value of Nsat at high carrier generation rate G and low-temperature T; the dependence of Nsat on both G and T at intermediate temperature; and independence of G coupled with dependence on T at high temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 63 (1993), S. 1948-1950 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: First experimental results on light-induced annealing (LIA) of deposition-induced defects (DID) in hydrogenated amorphous silicon (a-Si:H) are reported. LIA of DID and of light-induced defects (LID) showed a big difference: the reduction in density of DID by LIA is as low as one third or less of LID reduced by LIA, while thermal annealing reduced DID and LID very similarly. Those results indicate a structural difference between DID and LID, and are discussed in connection with a structural model of a-Si:H.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...