ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 2443-2453 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A drift-Alfvén magnetoturbulence model that augments reduced magnetohydrodynamics with evolution of electron density under parallel compression and fluid advection has been studied numerically. In the Alfvénic regime, measurement of spectral transfer rates, frequency spectra, energy partitions, and the ensemble-averaged turbulent response reveals both Alfvénic and hydrodynamic characteristics. The rms turbulent frequency is Alfvénic, the energies are equipartitioned, and there is a fast, Alfvén-time scale relaxation in the turbulent response. The mean frequency is hydrodynamic, with diamagnetic and eddy straining signatures, and there is an eddy straining decorrelation appearing as a distinct, long time scale branch in the turbulent response. The decay rates and relative fluctuation strengths associated with fast and slow time scale decorrelation are in good agreement with theoretical predictions that posit a Kolmogorov spectrum in the Alfvénic regime. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3998-4009 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new procedure for calculating the nonlinear energy transfer and linear growth/damping rate of fully developed turbulence is derived. It avoids the unphysically large damping rates typically obtained using the predecessor method of Ritz [Ch. P. Ritz, E. J. Powers, and R. D. Bengtson, Phys. Fluids B 1, 153 (1989)]. It enforces stationarity of the turbulence to reduce the effects of noise and fluctuations not described by the basic governing equation, and includes the fourth-order moment to avoid the closure approximation. The new procedure has been implemented and tested on simulated, fully developed two-dimensional (2-D) turbulence data from a 2-D trapped-particle fluid code, and has been shown to give excellent reconstructions of the input growth rate and nonlinear coupling coefficients with good noise rejection. However, in the experimentally important case where only a one-dimensional (1-D) averaged representation of the underlying 2-D turbulence is available, this technique does not, in general, give acceptable results. A new 1-D algorithm has thus been developed for analysis of 1-D measurements of intrinsically 2-D turbulence. This new 1-D algorithm includes the nonresonant wave numbers in calculating the bispectra, and generally gives useful results when the width of the radial wave number spectrum is comparable to or less than that of the poloidal spectrum. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 4204-4215 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The two-dimensional stationary turbulence of magnetic field and density fluctuations coupled through the compressibility of parallel electron motion is shown to possess three distinct stationary states under driving of the magnetic field by the time-dependent thermal force and damping by resistivity and collisional diffusivity. The three states are the equipartitioned magnetic state that occurs when short-wavelength fluctuations interact principally through the long-wavelength magnetic field fluctuation, a magnetic energy-dominated state induced by the decorrelation of nonlinear interactions by strong diamagnetic rotation, and an internal energy-dominated state possible when the dissipation of the density is weaker than the resistive diffusion. The equipartitioned and internal energy-dominated states can occur for identical parameters, making the driven/damped turbulent steady state nonunique. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...