ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (27)
Collection
Years
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Z-pinch-driven hohlraum (ZPDH) [J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999)] is a promising approach to high yield inertial confinement fusion currently being characterized in experiments on the Sandia Z accelerator [M. E. Cuneo et al., Phys. Plasmas 8, 2257 (2001)]. Simulations show that capsule radiation symmetry, a critical issue in ZPDH design, is governed primarily by hohlraum geometry, dual-pinch power balance, and pinch timing. In initial symmetry studies on Z without the benefit of a laser backlighter, highly-asymmetric pole-hot and equator-hot single Z-pinch hohlraum geometries were diagnosed using solid low density foam burnthrough spheres. These experiments demonstrated effective geometric control and prediction of polar flux symmetry at the level where details of the Z-pinch implosion and other higher order effects are not critical. Radiation flux symmetry achieved in Z double-pinch hohlraum configurations exceeds the measurement sensitivity of this self-backlit foam ball symmetry diagnostic. To diagnose radiation symmetry at the 2%–5% level attainable with present ZPDH designs, high-energy x rays produced by the recently-completed Z-Beamlet laser backlighter are being used for point-projection imaging of thin-wall implosion and symmetry capsules. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Present-day Z-pinch experiments generate 200 TW peak power, 5–10 ns duration x-ray bursts that provide new possibilities to advance radiation science. The experiments support both the underlying atomic and plasma physics, as well as inertial confinement fusion and astrophysics applications. A typical configuration consists of a sample located 1–10 cm away from the pinch, where it is heated to 10–100 eV temperatures by the pinch radiation. The spectrally-resolved sample-plasma absorption is measured by aiming x-ray spectrographs through the sample at the pinch. The pinch plasma thus both heats the sample and serves as a backlighter. Opacity measurements with this source are promising because of the large sample size, the relatively long radiation duration, and the possibility to measure opacities at temperatures above 100 eV. Initial opacity experiments are under way with CH-tamped NaBr foil samples. The Na serves as a thermometer and absorption spectra are recorded to determine the opacity of Br with a partially-filled M-shell. The large sample size and brightness of the Z pinch as a backlighter are also exploited in a novel method measuring re-emission from radiation-heated gold plasmas. The method uses a CH-tamped layered foil with Al+MgF2 facing the radiation source. A gold backing layer that covers a portion of the foil absorbs radiation from the source and provides re-emission that further heats the Al+MgF2. The Al and Mg heating is measured using space-resolved Kα absorption spectroscopy and the difference between the two regions enables a determination of the gold re-emission. Measurements are also performed at lower densities where photoionization is expected to dominate over collisions. Absorption spectra have been obtained for both Ne-like Fe and He-like Ne, confirming production of the relevant charge states needed to benchmark atomic kinetics models. Refinement of the methods described here is in progress to address multiple issues for radiation science. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 3573-3594 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A radiation source has been developed on the 20-MA Z facility that produces a high-power x-ray pulse, generated in the axial direction primarily from the interior of a collapsing dynamic hohlraum (DH). The hohlraum is created from a solid cylindrical CH2 target centered within an imploding tungsten wire-array Z pinch. Analyses and interpretation of measurements made of the x-ray generation within and radiated from the hohlraum target have been done using radiation-magnetohydrodynamic-code simulations in the r-z plane that take account of the magnetic Rayleigh–Taylor (RT) instability. These analyses suggest that a significantly reduced RT seed (relative to that used to explain targetless Z-pinch data on Z) is required to explain the observations. Although some quantitative and qualitative agreement with the measurements is obtained with the reduced RT seed, differences remain. Initial attempts to include into the simulations a precursor plasma, arising from wire material driven ahead of the main implosion, did not ameliorate the differences. Modification of the simulated W/CH2 interface may be required to properly explain the measured axial radiation pulse. This pulse, which exits a 4.5-mm2 hole centered above the target, begins ∼5 ns prior to stagnation (as defined by peak radial radiation power). The 5-ns interval leading to stagnation represents the duration when the imploding tungsten plasma acts as a hohlraum wall, trapping radiation within the interior of the foam target. The hohlraum radiation exiting the hole at 6 degrees to the z-axis reaches a maximum intensity of 3.1±0.6 TW/str (associated with an average hohlraum temperature of 215±10 eV), 1.4±0.4 ns prior to stagnation. (The uncertainties represent rms shot-to-shot variations.) This radiation pulse, characterized here, is useful for performing radiation-transport experiments with drive temperatures in excess of 200 eV. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 1673-1691 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A quasianalytic model of the dynamic hohlraum is presented. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum radiation temperature as a function of the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and quasispherical Z pinches. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV—providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh–Taylor instability in the r–z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ∼40% with only a 3%–5% decrease in peak temperature, in agreement with measurements. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: During the past year we have conducted a series of PBFA II target experiments. The design of the experiments was threefold: to characterize the response of targets to ion beams, develop our experimental diagnostic capability, and benchmark our theoretical ability to design and predict the response of the experimental diagnostics to ion-beam-heated, ICF targets. We present here an analysis of spherical exploding pusher experiments. The targets were 6-mm-diam, 100-μm-thick, Cl-doped CH spheres, filled with 1.2 atm of deuterium doped with 7 Torr of H2S. The diagnostics included XRDs, x-ray pinhole, framing, and streak cameras, and a spatially resolved, x-ray crystal spectrometer. Our analysis includes comparisons between experimental results and theoretical predictions of diagnostics responses and sulfur line emission from the compressed target using one- and two-dimensional radiation/hydrodynamic code runs. This work supported by the U. S. Department of Energy under Contract No. DE-AC04-76-DP00789.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Particle Beam Fusion Accelerator II is a light-ion fusion accelerator that is presently capable of irradiating a 6-mm-diam sphere with ∼50 kJ of 5.5-MeV protons in ∼15 ns. An array of particle and x-ray diagnostics fielded on proton Inertial Confinement Fusion target experiments quantifies the incident particle beam and the subsequent target response. An overview of the ion and target diagnostic setup and capabilities will be given in the context of recent proton beam experiments aimed at studying soft x-ray emission from foam-filled targets and the hydrodynamic response of exploding-pusher targets. Ion beam diagnostics indicate ∼100 kJ of proton beam energy incident within a 1.2-cm radius of the center of the diode with an azimuthal uniformity which varied between 6% and 29%. Foam-filled target temperatures of 35 eV and closure velocities of 4 cm/μs were measured.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this article we investigate the partial closure of diagnostic holes in Z-pinch driven hohlraums. These hohlraums differ from current laser-driven hohlraums in a number of ways such as their larger size, greater x-ray drive energy, and lower temperature. Although the diameter of the diagnostic holes on these Z-pinch driven hohlraums can be much greater than their laser-driven counterparts, 4 mm in diameter or larger, radiation impinges on the wall material surrounding the hole for the duration of the Z pinch, nearly 100 ns. This incident radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and partially obscure this diagnostic hole. This partial obscuration reduces the effective area over which diagnostics view the hohlraum's radiation. This reduction in area can lead to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. In this article we describe the techniques used to characterize the hole-closure in these hohlraums and present the experimental measurements of this process. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the concept of the dynamic hohlraum an imploding Z pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision, the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal, the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diam with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diam. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 eV by stabilizing the pinch with a solid current return can. A current return can with nine slots imprints nine filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diam capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diam. Dynamic hohlraum shots including pellets were scheduled to take place on Z in September of 1998. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...