ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
  • American Institute of Physics (AIP)  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2016-05-27
    Description: The accurate absolute surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating the dangling bond energy of asymmetrically bonded surface atoms. In this study, we used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches. The surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite ZnO and GaN that we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group-I and group-VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces, and these results were also compared with the above method. The calculated results generally show that the surface energies of GaN are higher than those of ZnO, suggesting that ZnO tends to wet the GaN substrate, while GaN is unlikely to wet ZnO. Therefore, it will be challenging to grow high quality GaN thin films on ZnO substrates; however, high quality ZnO thin film on GaN substrate would be possible. These calculations and comparisons may provide important insights into crystal growth of the above materials, thereby leading to significant performance enhancements in semiconductor devices.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: We took advantage of the large anomalous Hall effect (AHE) in Fe–Pt ferromagnetic alloys and fabricated magnetic sensors for low-frequency applications. We characterized the low-frequency electronic noise and the field detectability of the FexPt100-x system with various thin film thicknesses and Fe concentrations. The noise source consisted of 1/f and Johnson noise. A large current density increased the 1/f noise but not the Johnson noise. We found that the field detectability of the optimized Fe–Pt thin film offers much better low-frequency performance than a highly sensitive commercial semiconductor Hall sensor. Anomalous Hall effect sensors are, therefore, good candidates for magnetic sensing applications.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-27
    Description: In this work, we fabricate and characterize an energy-efficient anomalous Hall sensor based on soft-magnetic FexPt1−x thin films with a large anomalous Hall angle. By varying the composition of the FexPt1−x alloy, its layer thickness and interfacial materials, the magnetization is tuned to be near the spin transition between the perpendicular and in-plane reorientations. We performed magneto-transport and noise characterizations on anomalous Hall sensors with a small sensing area of 20 × 20 µm2 in the 180 to 350 K temperature range. We found the best performance in a 1.25-nm-thick Fe0.48Pt0.52 sandwiched by two 1.6-nm-thick MgO layers at room temperature. The sensor has a large anomalous Hall angle of 1.95%. Moreover, it has the best field detectability of 237.5 nT/√Hz at 1 Hz and 15.3 nT/√Hz at 10 kHz, as well as a high dynamic reserve of 112.0 dB. These results suggest that the FexPt1−x alloy system is suitable for energy-efficient anomalous Hall sensors, particularly in micro-sensing applications.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...