ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • Molecular Diversity Preservation International  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 5 (1995), S. 70-75 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: After listening to a sound that is presented repeatedly, subjects report hearing different transforms of the original sound. The frequency of reported transforms is a sensitive index of some speech disorders as well as cognitive flexibility in aging. In this paper, we propose and investigate quantitative measures that characterize the dynamics of this phenomenon, known as the verbal transformation effect. In particular, we show that the distribution of the dwell time, the time spent perceiving a string of a given phonemic form before switching to another form, obeys a power law for normal subjects with an exponent valued between 1 and 2. This result suggests that within this paradigm there is no characteristic time scale for the perceptual process. Additionally, we analyze the correlation properties of the transforms. We suggest that the complexity measures and techniques introduced here might be useful diagnostic tools for a number of speech and cognitive disorders. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 5 (1995), S. 64-69 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using a sensorimotor coordination task in conjunction with an array of SQUIDs (Superconducting QUantum Interference Devices) we demonstrate critical instabilities in human brain activity patterns. Analysis of the dominant spatial pattern of the brain and its time-varying amplitude displays a task-dependent geometry characteristic of Šil'nikov-like chaos, which changes qualitatively at the transition. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-02
    Description: Educational systems consider fostering creativity and cooperation as two essential aims to nurture future sustainable citizens. The cooperative learning approach proposes different pedagogical strategies for developing creativity in students. In this paper, we conceptualize collaborative creativity under the framework of coordination dynamics and, specifically, we base it on the formation of spontaneous multiscale synergies emerging in complex living systems when interacting with cooperative/competitive environments. This conception of educational agents (students, teachers, institutions) changes the understanding of the teaching/learning process and the traditional roles assigned to each agent. Under such an understanding, the design and co-design of challenging and meaningful learning environments is a key aspect to promote the spontaneous emergence of multiscale functional synergies and teams (of students, students and teachers, teachers, institutions, etc.). According to coordination dynamics, cooperative and competitive processes (within and between systems and their environments) are seen not as opposites but as complementary pairs, needed to develop collaborative creativity and increase the functional diversity potential of teams. Adequate manipulation of environmental and personal constraints, nested in different level and time scales, and the knowledge of their critical (tipping) points are key aspects for an adequate design of learning environments to develop synergistic creativity.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-27
    Description: Coordination is a ubiquitous feature of all living things. It occurs by virtue of informational coupling among component parts and processes and can be quite specific (as when cells in the brain resonate to signals in the environment) or nonspecific (as when simple diffusion creates a source–sink dynamic for gene networks). Existing theoretical models of coordination—from bacteria to brains to social groups—typically focus on systems with very large numbers of elements (N→∞) or systems with only a few elements coupled together (typically N = 2). Though sharing a common inspiration in Nature’s propensity to generate dynamic patterns, both approaches have proceeded largely independent of each other. Ideally, one would like a theory that applies to phenomena observed on all scales. Recent experimental research by Mengsen Zhang and colleagues on intermediate-sized ensembles (in between the few and the many) proves to be the key to uniting large- and small-scale theories of coordination. Disorder–order transitions, multistability, order–order phase transitions, and especially metastability are shown to figure prominently on multiple levels of description, suggestive of a basic Coordination Dynamics that operates on all scales. This unified coordination dynamics turns out to be a marriage of two well-known models of large- and small-scale coordination: the former based on statistical mechanics (Kuramoto) and the latter based on the concepts of Synergetics and nonlinear dynamics (extended Haken–Kelso–Bunz or HKB). We show that models of the many and the few, previously quite unconnected, are thereby unified in a single formulation. The research has led to novel topological methods to handle the higher-dimensional dynamics of coordination in complex systems and has implications not only for understanding coordination but also for the design of (biorhythm inspired) computers.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...