ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (13)
  • Blackwell Science Inc  (2)
  • American Institute of Physics (AIP)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 28 (1987), S. 1809-1812 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The Painlevé criterion has been applied to the supersymmetric nonlinear Schrödinger equation. This particular system of fermionic and bosonic fields shows up a rich spectrum of resonances and it can be explicitly proved that the expansion coefficients at the resonance positions can remain arbitrary. At this point is is worth noting that even when the extra nonlinear field (which is fermionic in this case) is considered to be bosonic, the resulting system turns out to satisfy the Painlevé test so that this second system may be thought of as a new completely integrable system whose Lax pair is still to be found.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Magnesium aluminate (MgAl2O4) spinel powders of irregular and spherical morphologies were obtained from the bi-component water-based sols following the sol–gel and sol–emulsion–gel methods, respectively. For the synthesis of the oxide microspheres, the surfactant concentration and viscosity of the sols were found to affect the characteristics of the derived microspheres. The gel and calcined powders were investigated by using thermogravimetry analysis, differential thermal analysis, X-ray diffraction (XRD), optical and scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy, and particle size analysis. XRD results indicated crystallization of the only phase MgAl2O4 spinel from 200° to 1000°C. Formation of hollow microspheres with a single cavity was identified by SEM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Malden, USA : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Boehmite (γ-AlOOH) nanoparticles were successfully synthesized by the two-reverse emulsion technique at 90°±1°C under constant agitation with varying Al3+ concentrations in the aqueous solution. A mixture of cyclohexane and the surfactant, sorbitan monooleate (Span 80), constituted the support solvent in the reverse emulsions. The synthesized particles were characterized by thermogravimetry, differential thermal analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size analysis, and transmission electron microscopy (TEM). XRD and FTIR results confirmed crystalline boehmite formation at 90°±1°C. The average particle size of boehmite was found to be 10 nm. The spherical morphology of the boehmite nanoparticles was confirmed by TEM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-20
    Description: We report a facile approach to control the shape memory effects and thermomechanical characteristics of a lignin-based multiphase polymer. Solvent fractionation of a syringylpropane-rich technical organosolv lignin resulted in selective lignin structures having excellent thermal stability coupled with high stiffness and melt-flow resistance. The fractionated lignins were reacted with rubber in melt-phase to form partially networked elastomer enabling selective programmability of the material shape either at 70 °C, a temperature that is high enough for rubbery matrix materials, or at an extremely high temperature, 150 °C. Utilizing appropriate functionalities in fractionated lignins, tunable shape fixity with high strain and stress recovery, particularly high-stress tolerance were maintained. Detailed studies of lignin structures and chemistries were correlated to molecular rigidity, morphology, and stress relaxation, as well as shape memory effects of the materials. The fractionation of lignin enabled enrichment of specific lignin properties for efficient shape memory effects that broaden the materials’ application window. Electron microscopy, melt-rheology, dynamic mechanical analysis and ultra-small angle neutron scattering were conducted to establish morphology of acrylonitrile butadiene rubber (NBR)-lignin elastomers from solvent fractionated lignins.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-16
    Description: Life-threatening bacterial infections have been well-controlled by antibiotic therapies and this approach has greatly improved the health and lifespan of human beings. However, the rapid and worldwide emergence of multidrug resistant (MDR) bacteria has forced researchers to find alternative treatments for MDR infections as MDR bacteria can sometimes resist all the present day antibiotic therapies. In this respect, nanomaterials have emerged as innovative antimicrobial agents that can be a potential solution against MDR bacteria. The present review discusses the advantages of nanomaterials as potential medical means and carriers of antibacterial activity, the types of nanomaterials used for antibacterial agents, strategies to tackle toxicity of nanomaterials for clinical applications, and limitations which need extensive studies to overcome. The current progress of using different types of nanomaterials, including new emerging strategies for the single purpose of combating bacterial infections, is also discussed in detail.
    Electronic ISSN: 2076-2607
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-28
    Description: The development of sensitive biosensors, such as gallium nitride (GaN)-based quantum wells, transistors, etc., often makes it necessary to functionalize GaN surfaces with small molecules or even biomolecules, such as proteins. As a first step in surface functionalization, we have investigated silane adsorption, as well as the formation of very thin silane layers. In the next step, the immobilization of the tetrameric protein streptavidin (as well as the attachment of chemically modified iron transport protein ferritin (ferritin-biotin-rhodamine complex)) was realized on these films. The degree of functionalization of the GaN surfaces was determined by fluorescence measurements with fluorescent-labeled proteins; silane film thickness and surface roughness were estimated, and also other surface sensitive techniques were applied. The formation of a monolayer consisting of adsorbed organosilanes was accomplished on Mg-doped GaN surfaces, and also functionalization with proteins was achieved. We found that very high Mg doping reduced the amount of surface functionalized proteins. Most likely, this finding was a consequence of the lower concentration of ionizable Mg atoms in highly Mg-doped layers as a consequence of self-compensation effects. In summary, we could demonstrate the necessity of Mg doping for achieving reasonable bio-functionalization of GaN surfaces.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-30
    Description: Nanomaterial-based wound healing has tremendous potential for treating and preventing wound infections with its multiple benefits compared with traditional treatment approaches. In this regard, the physiochemical properties of nanomaterials enable researchers to conduct extensive studies on wound-healing applications. Nonetheless, issues concerning the use of nanomaterials in accelerating the efficacy of existing medical treatments remain unresolved. The present review highlights novel approaches focusing on the recent innovative strategies for wound healing and infection controls based on nanomaterials, including nanoparticles, nanocomposites, and scaffolds, which are elucidated in detail. In addition, the efficacy of nanomaterials as carriers for therapeutic agents associated with wound-healing applications has been addressed. Finally, nanomaterial-based scaffolds and their premise for future studies have been described. We believe that the in-depth analytical review, future insights, and potential challenges described herein will provide researchers an up-to-date reference on the use of nanomedicine and its innovative approaches that can enhance wound-healing applications.
    Electronic ISSN: 1999-4923
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-09-02
    Description: Nano-particles have been combined with antibiotics in recent studies to overcome multidrug-resistant bacteria. Here, we synthesized a nano-material in which Ag nano-particles were assembled with a ZnO nano-structure to form an Ag-ZnO (AZO) nano-composite at low temperature. This material was combined with erythromycin (Ery), an antibiotic effective towards gram-positive bacteria, using three different approaches (AZO + Ery (AZE) [centrifuged (AZE1), used separately after 1-h gap (AZE2), without centrifugation (AZE3)]) to prepare a nano-antibiotic against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). X-ray diffraction analysis and transmission electron microscopy confirmed the presence of Ag nano-particles and ZnO nano-structure. The elemental and chemical state of the elements present in the AZO nano-composite were assessed by X-ray photoelectron spectroscopy. The antibacterial activity of AZE samples against both Escherichia coli and S. aureus strains including MRSA was evaluated in antibacterial and morphological analyses. The AZE3 sample showed greater antibacterial activity than the other samples and was comparable to erythromycin. AZE3 was ~20-fold less prone to developing bacterial resistance following multiple exposures to bacteria compared to erythromycin alone. The AZE3 nano-composite showed good biocompatibility with 293 human embryonic kidney cells. Our newly synthesized nano-platform antibiotics may be useful against multidrug-resistant gram-positive bacteria.
    Electronic ISSN: 1999-4923
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-05-05
    Description: Semantic similarity is a long-standing problem in natural language processing (NLP). It is a topic of great interest as its understanding can provide a look into how human beings comprehend meaning and make associations between words. However, when this problem is looked at from the viewpoint of machine understanding, particularly for under resourced languages, it poses a different problem altogether. In this paper, semantic similarity is explored in Bangla, a less resourced language. For ameliorating the situation in such languages, the most rudimentary method (path-based) and the latest state-of-the-art method (Word2Vec) for semantic similarity calculation were augmented using cross-lingual resources in English and the results obtained are truly astonishing. In the presented paper, two semantic similarity approaches have been explored in Bangla, namely the path-based and distributional model and their cross-lingual counterparts were synthesized in light of the English WordNet and Corpora. The proposed methods were evaluated on a dataset comprising of 162 Bangla word pairs, which were annotated by five expert raters. The correlation scores obtained between the four metrics and human evaluation scores demonstrate a marked enhancement that the cross-lingual approach brings into the process of semantic similarity calculation for Bangla.
    Electronic ISSN: 2227-9709
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-10
    Description: The rapidly growing automobile industry increases the accumulation of end-of-life tires each year throughout the world. Waste tires lead to increased environmental issues and lasting resource problems. Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of society. A patented sulfonation process followed by pyrolysis at 1100 °C in a nitrogen atmosphere was used to produce carbon material from these tires and utilized as an anode in lithium-ion batteries. The combustion of the volatiles released in waste tire pyrolysis produces lower fossil CO2 emissions per unit of energy (136.51 gCO2/kW·h) compared to other conventional fossil fuels such as coal or fuel–oil, usually used in power generation. The strategy used in this research may be applied to other rechargeable batteries, supercapacitors, catalysts, and other electrochemical devices. The Raman vibrational spectra observed on these carbons show a graphitic carbon with significant disorder structure. Further, structural studies reveal a unique disordered carbon nanostructure with a higher interlayer distance of 4.5 Å compared to 3.43 Å in the commercial graphite. The carbon material derived from tires was used as an anode in lithium-ion batteries exhibited a reversible capacity of 360 mAh/g at C/3. However, the reversible capacity increased to 432 mAh/g at C/10 when this carbon particle was coated with a thin layer of carbon. A novel strategy of prelithiation applied for improving the first cycle efficiency to 94% is also presented.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...