ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bradyrhizobium japonicum  (3)
  • Aspergillus niger  (1)
  • Springer  (4)
  • American Institute of Physics
Collection
Publisher
  • Springer  (4)
  • American Institute of Physics
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 144 (1986), S. 151-157 
    ISSN: 1432-072X
    Keywords: Aspergillus niger ; Nitrogen limitation ; Gluconate accumulation ; Enzyme activities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Batch cultures of Aspergillus niger grown from conidia on a medium with high C/N ratio accumulated gluconate from glucose with a yield of 57%. During almost the whole time of accumulation there was no net synthesis of total protein in the mycelium but the activity per flask and the specific activity of glucose oxidase (EC 1.1.3.4) in mycelial extracts increased whereas both values decreased for glucose dehydrogenase (EC 1.1.99.10) ‘gluconate 6-phosphatase’ (cf. EC 3.1.3.1, 3.1.3.2), gluconokinase (EC 2.7.1.12), glucose 6-phosphate and phosphogluconate dehydrogenases (EC 1.1.1.49, EC 1.1.1.44), phosphoglucomutase (EC 2.7.5.1), and most enzymes of the Embden-Meyerhof pathway and the tricarboxylic acid cycle. Gluconate dehydratase (EC 4.2.1.39), gluconate dehydrogenase (EC 1.1.99.3) and enzymes of the Entner-Doudoroff pathway could not be detected. By cycloheximide the increase of glucose oxidase activity was inhibited. It is concluded that the high yield of gluconate was due mainly to the net (de novo) synthesis of glucose oxidase which occurred during protein turnover after the exhaustion of the nitrogen source, and which was not accompanied by a net synthesis of the other enzymes investigated. Some gluconate may also have been formed by hydrolytic cleavage of gluconate 6-phosphate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Bradyrhizobium japonicum ; NifA activity ; nifA mRNA half-lives ; Oxygen shift ; Post-transcriptional control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous work had shown that Bradyrhizobium japonicum nifA-dependent nif gene activation was inhibited by oxygen via a post-transcriptional mechanism. In the present report we demonstrate that this inhibition occurs at the NifA protein level and that it is irreversible. To narrow down the level of control the influence of oxygen on nifA mRNA stability and NifA protein activity was analyzed. The half-lives of B. japonicum and Klebsiella pneumoniae (control) nifA mRNAs derived from constitutively expressed nifA genes did not differ significantly under aerobic and anaerobic conditions which makes it unlikely that oxygen exerts its effect by selectively destabilizing B. japonicum nifA mRNA. By making use of its ability to activate in Escherichia coli a B. japonicum nifD' — 'lacZ fusion, the NifA protein was assayed by the determination of lacZ mRNA and β-galactosidase synthesis. Oxygen shift experiments clearly demonstrated that B. japonicum NifA activity (but not that of K. pneumoniae) was drastically reduced within minutes upon a shift to aerobiosis and that the inactivation was irreversible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Bradyrhizobium japonicum ; Electron transfer flavoprotein ; etf Genes ; fix Genes ; Nitrogen fixation ; Phylogenetic tree ; Protein family
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A group of four co-regulated genes (fixA, fixB, fixC, fixX) essential for symbiotic nitrogen fixation has been described in several rhizobial species, includingBradyrhizobium japonicum. The complete nucleotide sequence of theB. japonicum fixA, fixB andfixC, genes is reported here. The derived amino acid sequences confirmed the previously noted sequence similarity between FixA and the β-subunit and between FixB and the α-subunit of mammalian andParacoccus denitrificans electron transfer flavoproteins (ETF). Since the classical role of ETF is in β-oxidation of fatty acids, a process unrelated to nitrogen fixation, we rationalized thatB. japonicum ought to contain bona fideetf genes in addition to theetf-like genesfixA andfixB. Therefore, we identified, cloned, sequenced, and transcriptionally analyzed theB. japonicum etfSL genes encoding the β-and α-subunits of ETF. TheetfSL genes, but not thefix genes, are transcribed in aerobically grown cells. An amino acid sequence comparison between all available ETFs and ETF-like proteins revealed the existence of two distinguishable subfamilies. Group I comprises housekeeping ETFs that link acyl-CoA dehydrogenase reactions with the respiratory chain, such as in the fatty acid degradation pathway.B. japonicum EtfS and EtfL clearly belong to this group. Group II contains ETF-like proteins that are synthesized only under certain specific growth conditions and receive electrons from the oxidation of specific substrates. The products of the anaerobically inducedfixA andfixB genes ofB. japonicum are members of that group.B. japonicum is the first example of an organism in which genes for proteins of both groups I and II of the ETF family have been identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 209 (1987), S. 621-626 
    ISSN: 1617-4623
    Keywords: Bradyrhizobium japonicum ; nifA gene ; Nitrogen fixation ; Oxygen control ; Transcriptional control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nifA genes of Klebsiella pneumoniae and Bradyrhizobium japonicum were constitutively expressed from the pBR329-derived chloramphenicol resistance promoter. The inserts of these nifA plasmid constructs were devoid of any other intact flanking genes. The nifA genes thus expressed led to a marked activation of a B. japonicum nifD-lacZ fusion under microaerobic conditions. Under aerobic growth conditions, however, activation was mediated only by the K. pneumoniae nifA gene but not by the B. japonicum nifA gene. This selective effect was observed in both the Escherichia coli as well as the B. japonicum backgrounds. Several lines of evidence suggest that in these experiments oxygen adversely affects B. japonicum nifA-dependent nif gene regulation at the post-transcriptional level, probably even at the post-translational level, and that this effect does not require a nifL-like gene. Models are proposed in which oxygen inhibits the B. japonicum NifA protein either directly or indirectly via other cellular components involved in general protein oxidation pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...