ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-21
    Description: We propose to test if gravimetry can prove useful in discriminating different models of long-term deep crustal processes in the case of the Taiwan mountain belt. We discuss two existing tectonic models that differ in the deep processes proposed to sustain the long-term growth of the orogen. One model assumes underplating of the uppermost Eurasian crust with subduction of the deeper part of the crust into the mantle. The other one suggests the accretion of the whole Eurasian crust above crustal-scale ramps, the lower crust being accreted into the collisional orogen. We compute the temporal gravity changes caused only by long-term rock mass transfers at depth for each of them. We show that the underplating model implies a rate of gravity change of –6 x 10 –2 μGal yr –1 , a value that increases to 2 x 10 –2 μGal yr –1 if crustal subduction is neglected. If the accretion of the whole Eurasian crust occurs, a rate of 7 x 10 –2 μGal yr –1 is obtained. The two models tested differ both in signal amplitude and spatial distribution. The yearly gravity changes expected by long-term deep crustal mass processes in Taiwan are two orders of magnitude below the present-day uncertainty of land-based gravity measurements. Assuming that these annually averaged long-term gravity changes will linearly accumulate with ongoing mountain building, multidecadal time-series are needed to identify comparable rates of gravity change. However, as gravity is sensitive to any mass redistribution, effects of short-term processes such as seismicity and surface mass transfers (erosion, sedimentation, ground-water) may prevent from detecting any long-term deep signal. This study indicates that temporal gravity is not appropriate for deciphering the long-term deep crustal processes involved in the Taiwan mountain belt.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-26
    Description: Sensitive instruments like strainmeters and tiltmeters are necessary for measuring slowly varying low amplitude Earth deformations. Nonetheless, laser and fibre interferometers are particularly suitable for interrogating such instruments due to their extreme precision and accuracy. In this paper, a practical design of a simple pendulum borehole tiltmeter based on laser fibre interferometric displacement sensors is presented. A prototype instrument has been constructed using welded borosilicate with a pendulum length of 0.85 m resulting in a main resonance frequency of 0.6 Hz. By implementing three coplanar extrinsic fibre Fabry-Perot interferometric probes and appropriate signal filtering, our instrument provides tilt measurements that are insensitive to parasitic deformations caused by temperature and pressure variations. This prototype has been installed in an underground facility (Rustrel, France) where results show accurate measurements of Earth strains derived from Earth and ocean tides, local hydrologic effects, as well as local and remote earthquakes. The large dynamic range and the high sensitivity of this tiltmeter render it an invaluable tool for numerous geophysical applications such as transient fault motion, volcanic strain and reservoir monitoring.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-29
    Description: Gravity variations associated with Earth's oblateness ( J 2 ) have been observed by satellite laser ranging (SLR) since 1976. The J 2 time-series has been used to measure and help understand many geophysical processes within the Earth system ranging from the mantle to the atmosphere. While post glacial rebound and the Earth climate system are believed to be the primary driving forces of long-term and seasonal J 2 variations, the physical cause of decadal and longer timescale J 2 variations has remained uncertain, although recent evidence indicates that polar ice mass changes are important. In this study, we estimate a variety of climate contributions to J 2 over the period 1979–2010, and find that ice mass variations in Greenland and Antarctica are the dominant cause of observed decadal and longer J 2 variations. Residual variations at periods near 10–11 years may reflect limitations of numerical climate models in estimating mass change variability at long periods, but are also suggestive of potential contribution related to variable solar activity.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-25
    Description: A new approach based on energy conservation principle for satellite gravimetry mission has been developed and yields more accurate estimation of in situ geopotential difference observables using K-band ranging (KBR) measurements from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. This new approach preserves more gravity information sensed by KBR range-rate measurements and reduces orbit error as compared to previous energy balance methods. Results from analysis of 11 yr of GRACE data indicated that the resulting geopotential difference estimates agree well with predicted values from official Level 2 solutions: with much higher correlation at 0.9, as compared to 0.5–0.8 reported by previous published energy balance studies. We demonstrate that our approach produced a comparable time-variable gravity solution with the Level 2 solutions. The regional GRACE temporal gravity solutions over Greenland reveals that a substantially higher temporal resolution is achievable at 10-d sampling as compared to the official monthly solutions, but without the compromise of spatial resolution, nor the need to use regularization or post-processing.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-06
    Description: The measurement of ongoing ice-mass loss and associated melt water contribution to sea-level change from regions such as West Antarctica is dependent on a combination of remote sensing methods. A key method, the measurement of changes in Earth's gravity via the GRACE satellite mission, requires a potentially large correction to account for the isostatic response of the solid Earth to ice-load changes since the Last Glacial Maximum. In this study, we combine glacial isostatic adjustment modelling with a new GPS dataset of solid Earth deformation for the southern Antarctic Peninsula to test the current understanding of ice history in this region. A sufficiently complete history of past ice-load change is required for glacial isostatic adjustment models to accurately predict the spatial variation of ongoing solid Earth deformation, once the independently-constrained effects of present-day ice mass loss have been accounted for. Comparisons between the GPS data and glacial isostatic adjustment model predictions reveal a substantial misfit. The misfit is localized on the southwestern Weddell Sea, where current ice models under-predict uplift rates by approximately 2 mm yr –1 . This under-prediction suggests that either the retreat of the ice sheet grounding line in this region occurred significantly later in the Holocene than currently assumed, or that the region previously hosted more ice than currently assumed. This finding demonstrates the need for further fieldwork to obtain direct constraints on the timing of Holocene grounding line retreat in the southwestern Weddell Sea and that GRACE estimates of ice sheet mass balance will be unreliable in this region until this is resolved.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-17
    Description: Measurements of ground deformation can be used to identify and interpret geophysical processes occurring at volcanoes. Most studies rely on a single geodetic technique, or fit a geophysical model to the results of multiple geodetic techniques. Here we present a methodology that combines GPS, Total Station measurements and InSAR into a single reference frame to produce an integrated 3-D geodetic velocity surface without any prior geophysical assumptions. The methodology consists of five steps: design of the network, acquisition and processing of the data, spatial integration of the measurements, time series computation and finally the integration of spatial and temporal measurements. The most significant improvements of this method are (1) the reduction of the required field time, (2) the unambiguous detection of outliers, (3) an increased measurement accuracy and (4) the construction of a 3-D geodetic velocity field. We apply this methodology to ongoing motion on Arenal's western flank. Integration of multiple measurement techniques at Arenal volcano revealed a deformation field that is more complex than that described by individual geodetic techniques, yet remains consistent with previous studies. This approach can be applied to volcano monitoring worldwide and has the potential to be extended to incorporate other geodetic techniques and to study transient deformation.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-07-03
    Description: Apparent acceleration in Gravity Recovery and Climate Experiment (GRACE) Antarctic ice mass time-series may reflect both ice discharge and surface mass balance contributions. However, a recent study suggests there is also contamination from errors in atmospheric pressure de-aliasing fields [European Center for Medium-Range Weather Forecast (ECMWF) operational products] used during GRACE data processing. To further examine this question, we compare GRACE atmospheric pressure de-aliasing (GAA) fields with in situ surface pressure data from coastal and inland stations. Differences between the two are likely due to GAA errors, and provide a measure of error in GRACE solutions. Time-series of differences at individual weather stations are fit to four presumed error components: annual sinusoids, a linear trend, an acceleration term and jumps at times of known ECMWF model changes. Using data from inland stations, we estimate that atmospheric pressure error causes an acceleration error of about +7.0 Gt yr –2 , which is large relative to prior GRACE estimates of Antarctic ice mass acceleration in the range of –12 to –14 Gt yr –2 . We also estimate apparent acceleration rates from other barometric pressure (reanalysis) fields, including ERA-Interim, MERRA and NCEP/DOE. When integrated over East Antarctica, the four mass acceleration estimates (from GAA and the three reanalysis fields) vary considerably (by ~2–16 Gt yr –2 ). This shows the need for further effort to improve atmospheric mass estimates in this region of sparse in situ observations, in order to use GRACE observations to measure ice mass acceleration and related sea level change.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-12
    Description: Constraining laterally varying structures in planetary interiors is important for understanding both the composition and the internal dynamics of a planet. Recognizing that seismic imaging technique is currently only viable for studying the Earth's interior structures, methods that can be supported by advanced space geodetic techniques may become alternatives to ‘image’ the interiors of other planets. The method of tidal tomography is one possibility, and it relies on high precision measurement of the response of a planet to its body tide. However, it is essential to develop an efficient analytical tool that computes the dependence of tidal response to 3-D interior structures. In this paper, we present a complete formulation of such an analytical tool, which calculates to high accuracy the tidal response of a terrestrial planet with lateral heterogeneities in its elastic and density structures. We treat the lateral heterogeneities as small perturbations and derive the governing equations based on the perturbation theory. In a spherical harmonic representation, equations at each order of perturbation are reduced into multiple matrix equations at harmonics that are allowed by mode couplings, and the total response equals the sum of all those single-harmonic responses, which can be solved semi-analytically. We test our perturbation method by applying it to the Moon with a harmonic degree-1 mantle structure for which the perturbation solutions of the tidal response are compared with those from a fully numerical method. The remarkable agreement between results from these two methods validates the perturbation method. As an example, we then use the perturbation method to evaluate the impact of lunar crustal thickness variations on tidal response of the Moon. We find that lunar crust produces much smaller degree-3 tidal responses than a relatively weak degree-1 structure in the deep lunar mantle. Our calculations show that degree-3 tidal response measurements may hold key constraints on possible degree-1 mantle structure of the Moon, as suggested from previous modelling results.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-24
    Description: We interpreted the TRIDENT satellite derived gravity field to provide detailed insights into the spatial distribution of the crustal density structures in the area of the Yellow Sea. We used 3-D forward density modelling for the interpretation that incorporated constraints from existing geological and geophysical information. A gravity stripping method is used to separate out the gravity effects of different geological crustal structures. From this analysis we see that (1) the Gunsan sedimentary basin is isostatically compensated. (2) The satellite-derived Bouguer anomalies ranging from 15 to –30 x 10 –5 m s –2 are linked to basin thicknesses in the Yellow Sea. (3) The calculated Moho depth in the Yellow Sea varies from 27 km beneath the deep sedimentary basin to 34 km in the uplifted zones. (4) Moho depth calculations show two distinct areas, characterized by the deepest Moho depths and the largest crustal thicknesses in the Yellow Sea. The one region extends along the Qianliyan Uplift Zone from Jiaodong to Hongsung while the other area extends from southeastern China to Hongsung in the Korean peninsula. Compared to previous works we suggest that they are the part of the collisions zone between North and South China Blocks extending from China to the Korean peninsula via the Yellow Sea.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-19
    Description: In this paper, we present a method for incorporating prior geological information into potential field data inversion problem. As opposed to the traditional inverse algorithm, our proposed method takes full advantage of prior geological information as a constraint and thus obtains a new objective function for inversion by adding Lagrangian multipliers and slack variables to the traditional inversion method. These additional parameters can be easily solved during iterations. We used both synthetic and observed data sets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts depth and density anomalies more efficiently and accurately than the traditional inversion method that does not include prior geological constraints. Then using observed gravity data in the Three Gorges area and geological constraint information, we obtained the density distribution of the upper and middle crust in this area thus revealing its geological structure. These results confirm the proposed method's validity and indicate its potential application for magnetism data inversion and exploration of geological structures.
    Keywords: Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...