ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 690-696 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article presents theoretical calculations on bond energies for the first-row diatomics C2, CN, CO, CF, N2, NO, NF, O2, FO, and F2, which vary in bond order from one to three. The atomic-centered basis functions are systematically augmented with bond functions (BFs), which range in composition from (sp) to 2(spd), to determine the basis set which yields a dissociation energy closest to the experimental De. A strong correlation is found to exist between the bond order and the number of BFs required in the optimum basis set. Based on these results, we are able to predict the optimum composition of the BF basis which should be added to a DZP-quality AO basis set for a case in which only the bond order is known. These optimized BF basis sets are shown in the accompanying article to give more accurate potential curves than larger basis sets without bond functions.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 697-704 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In the current practice of quantum chemistry, it is not clear whether corrections for basis set superposition errors should be applied to the calculation of potential energy curves, in order to improve agreement with experimental data. To examine this question, spectroscopic parameters derived from theoretical potential curves are reported for the homonuclear diatomics C2, N2, O2, and F2, using a configuration interaction method. Three different basis sets were used, including double zeta plus polarization, triple zeta plus double polarization, and double zeta polarization augmented by bond functions. The bond function basis sets, which were optimized in the preceding paper to obtain accurate dissociation energies, also gave the most accurate parameters. The potential curves were then corrected for basis set superposition error using the counterpoise correction, and the spectroscopic parameters were computed again. The BSSE-corrected curves showed worse agreement with experiment for all properties than the original (uncorrected) curves. The reasons for this finding are discussed. In addition to the numerical results, some problems in the application of the BSSE correction to basis sets containing bond functions are shown. In particular, there is an overcounting of the lowering due to the bond functions, regardless of which type of correction is applied. Also, genuine BSSE affects cannot be separated from energy-lowering effects due to basis set incompleteness, and we postulate that it is the latter which is strongly dominant in the calculation of covalent potential curves. Based on these arguments, two conclusions follow: (1) application of BSSE corrections to potential curves should not be routinely applied in situations where the bonding is strong, and (2) appropriate use of bond functions can lead to systematic improvement in the quality of potential curves.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...