ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geodynamics and Tectonics  (37)
  • Biotechnology & Synthetic Biology  (12)
  • Oxford University Press  (49)
  • American Geophysical Union (AGU)
  • American Institute of Physics (AIP)
  • 1
    Publication Date: 2015-07-30
    Description: The Taupo Volcanic Zone (TVZ) is one of the world's most productive regions of rhyolitic volcanism and contains the highly active Okataina Volcanic Centre (OVC). Within the TVZ, intra-arc extension is expressed as normal faulting within a zone known as the Taupo Rift. The OVC is located within a complex part of the rift, where volcanism and deformation is considered influenced by rift structure and kinematics. There has been significant research on the structural, volcanic and geophysical properties of the rift and OVC, but less focus on deformation using geodetic data. The limited studies that have utilized geodetic data do not clearly resolve the distribution of deformation and strain rates within the rift and OVC. This is essential to ensure that deformation signals from volcanic processes at the OVC are correctly identified and distinguished from those related to regional tectonic or local hydrothermal processes within the rift. In this paper, we present a picture of contemporary deformation at the OVC and within the surrounding rift in detail, using existing and new GPS campaign and continuous GPS (cGPS) data collected between 1998 and 2011. The results show a highly heterogeneous deformation and strain rate field (both extension and shortening) through the study area, partitioned into different parts of the rift. Our results agree well with earlier geodetic studies, as well as identify new features, but some deformation patterns conflict with long-term geological observations. In the OVC, we observe a locally rotated horizontal velocity field, significant vertical deformation and variable strain rates across the caldera. In the Tarawera Rift, we identify elevated extension and shear rates, which may have significant implications for volcanism there. A shortening pattern is identified through the central rift, which is unexpected in an intra-arc rifting environment. We attempt to explain the source/s of shortening and extension and discuss their implications for geodetic monitoring efforts in the OVC.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-11
    Description: The mechanical damage characteristics of sandstone subjected to cyclic loading is very significant to evaluate the stability and safety of deep excavation damage zones. However to date, there are very few triaxial experimental studies of sandstone under cyclic loading. Moreover, few X-ray micro-computed tomography (micro-CT) observations have been adopted to reveal the damage mechanism of sandstone under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic loading tests and X-ray micro-CT observations were conducted to analyse the mechanical damage characteristics of sandstone with respect to different confining pressures. The results indicated that at lower confining pressures, the triaxial strength of sandstone specimens under cyclic loading is higher than that under monotonic loading; whereas at confining pressures above 20 MPa, the triaxial strength of sandstone under cyclic loading is approximately equal to that under monotonic loading. With the increase of cycle number, the crack damage threshold of sandstone first increases, and then significantly decreases and finally remains constant. Based on the damage evolution of irreversible deformation, it appears that the axial damage value of sandstone is all higher than the radial damage value before the peak strength; whereas the radial damage value is higher than the axial damage value after the peak strength. The evolution of Young's modulus and Poisson's ratio of sandstone can be characterized as having four stages: (i) Stage I: material strengthening; (ii) Stage II: material degradation; (iii) Stage III: material failure and (iv) Stage IV: structure slippage. X-ray micro-CT observations demonstrated that the CT scanning surface images of sandstone specimens are consistent with actual surface crack photographs. The analysis of the cross-sections of sandstone supports that the system of crack planes under triaxial cyclic loading is much more complicated than that under triaxial monotonic loading. More axial and lateral tensile cracks were observed in the specimens under cyclic loading than under monotonic loading.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-20
    Description: Joint analysis of the seismic velocities and geoid, gravity and gravity gradients are used to constrain the viscosity profile within the mantle as well as the lateral density variations. Recent ESA's Gravity field and steady-state Ocean Circulation Explorer measurements of the second-order derivatives of the Earth's gravity potential give new possibilities to determine these mantle properties. Using a simple mantle model and seismic tomography results, we investigate how the gravitational potential, the three components of the gravity vector and the gravity gradients can bring information on the radial viscosity profile and on the mantle mass anomalies. We start with lateral density variations in the Earth's mantle based either on slab history or deduced from seismic tomography. The main uncertainties are: for the latter case, the relationship between seismic velocity and density—the so-called density/velocity scaling factor—and for the former case, the variation with depth of the density contrast between the cold slabs and the surrounding mantle. We perform a Monte Carlo search for the viscosity and the density/velocity scaling factor profiles within the mantle, which allows to fit the observed geoid, gravity and gradients of gravity. We compute the posterior probability distribution of the unknown parameters, and find that the gravity gradients improve the estimate of the scaling factor within the upper mantle, because of their sensitivity to the masses within the upper mantle, whereas the geoid and the gravity better constrain the scaling factor in the lower mantle. In the upper mantle, it is less than 0.02 in the upper part and about 0.08–0.14 in the lower part, and it is significantly larger for depths greater than 1200 km (about 0.32–0.34). In any case, the density/velocity scaling factor between 670 and 1150 km depth is not well constrained. We show that the viscosity of the upper part of the mantle is strongly correlated with the viscosity of the lower part of the mantle and that the viscosity profile is characterized by a decrease in the lower part of the upper mantle (about 10 20 –2  x  10 20 Pa s) and by an increase (about 10 23 –2  x  10 23 Pa s) at the top of the lower mantle (between 670 and 1150 km). The viscosity of the mantle below 1150 km depth is well estimated in our Monte Carlo search and is about 10 22 –4  x  10 22 Pa s.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-12
    Description: Relative sea level curves contain coupled information about absolute sea level change and vertical lithospheric movement. Such curves may be constructed based on, for example tide gauge data for the most recent times and different types of geological data for ancient times. Correct account for vertical lithospheric movement is essential for estimation of reliable values of absolute sea level change from relative sea level data and vise versa. For modern times, estimates of vertical lithospheric movement may be constrained by data (e.g. GPS-based measurements), which are independent from the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality of the obtained results. The two tested inversion schemes result in estimated absolute sea level rise of ~1.2/1.3 mm yr –1 and vertical uplift rates ranging from approximately –1.4/–1.2 mm yr –1 (subsidence) to about 5.0/5.2 mm yr –1 if an a priori value of 1 mm yr –1 is used for the vertical lithospheric movement throughout the study area. In case the studied time interval is broken into two time intervals (before and after 1970), absolute sea level rise values of ~0.8/1.2 mm yr –1 (before 1970) and ~2.0 mm yr –1 (after 1970) are found. The uplift patterns resulting from the different inversions suggest that the lithospheric post-GIA response changes near the border between the Danish Basin and the Fennoscandian Shield. The obtained patterns of vertical lithospheric movement rates are comparable to results from other studies based on different and similar data types. Main differences between the inversion results and the results from other studies are caused by factors such as the simplifications included in the inversion approach, such as neglecting local sea level variation caused by the dominant wind patterns, and the a priori values chosen for the vertical uplift rates. The tests of the inversion schemes reveal that realistic values of absolute sea level rise and lithospheric uplift may be simultaneously estimated provided that reliable prior knowledge regarding the overall lithospheric uplift in the study area is available beforehand. In the presented parametrizations, only one absolute sea level change rate value is estimated for each studied time interval while several vertical movement rates are found, and the inverse estimate of absolute sea level change rate is practically insensitive with respect to the choice of a priori value of absolute sea level change, as long as the uncertainty assigned to this a priori value is kept sufficiently high.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-25
    Description: The Pyrenean mountain range is a slowly deforming belt with continuous and moderate seismic activity. To quantify its deformation field, we present the velocity field estimated from a GPS survey of the Pyrenees spanning 18 yr. The PotSis and ResPyr networks, including a total of 85 GPS sites, were installed and first measured in 1992 and 1995–1997, respectively, and remeasured in 2008 and 2010. We obtain a deformation field with velocities less than 1 mm yr –1 across the range. The estimated velocities for individual stations do not differ significantly from zero with 95 per cent confidence. Even so, we estimate a maximum extensional horizontal strain rate of 2.0 ± 1.7 nanostrain per year in a N–S direction in the western part of the range. We do not interpret the vertical displacements due to their large uncertainties. In order to compare the horizontal strain rates with the seismic activity, we analyse a set of 194 focal mechanisms using three methods: (i) the ‘r’ factor relating their P and T axes, (ii) the stress tensors obtained by fault slip inversion and (iii) the strain-rate tensors. Stress and strain-rate tensors are estimated for: (i) the whole data set, (ii) the eastern and western parts of the range separately, and (iii) eight zones, which are defined based on the seismicity and the tectonic patterns of the Pyrenees. Each of these analyses reveals a lateral variation of the deformation style from compression and extension in the east to extension and strike-slip in the west of the range. Although the horizontal components of the strain-rate tensors estimated from the seismic data are slightly smaller in magnitude than those computed from the GPS velocity field, they are consistent within the 2 uncertainties. Furthermore, the orientations of their principal axes agree with the mapped active faults.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-21
    Description: The Himalaya is the result of the on-going convergence and collision of India and Asia. The internal configuration and processes that govern the rise of the Himalayan Mountains and Tibetan Plateau are crucial to understand continental collision zones. However, knowledge of the prior configuration of the colliding plates is equally important, since inherited (pre-orogenic/basement) structures can undeniably influence the development of the orogenic architecture throughout the orogen's cycle of collision and eventual collapse. Three northeast-trending palaeotopographic ridges of faulted Precambrian Indian basement underlie the Ganga basin south of the Himalaya. Our paper illustrates a crustal-scale fault origin for these ridges and succeeds in determining how far north beneath the Himalayan system they extend and how they ultimately govern the location of upper crustal faults in southern Tibet. Spectrally filtered EGM2008 Bouguer gravity data and edges in its horizontal gradient at different source depths (‘gravity worms’) over northern Peninsular India, the Himalaya and southern Tibet reveal several continuous Himalayan cross-strike discontinuities interpreted to represent crustal faults. Gravity lineaments in Peninsular India coincide with edges of the Precambrian basement ridges and megakinks up to 100 km wide develop in foreland cover sequences between the interpreted basement faults. The interpreted basement faults project northward beneath the Himalayan system and southern Tibet. Our results suggest that several active Himalayan cross-strike faults, such as the ones related to many graben in southern Tibet, are rooted in the underplated Indian lower crust or step en échelon along interpreted basement faults. Our interpretation thus suggests that south Tibet graben are spatially related to deep-seated crustal-scale faults rooted in the underplated Indian crust. These major discontinuities partition the Himalayan range into distinct zones, and could ultimately contribute to lateral variability in tectonic evolution along the orogen's strike.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-31
    Description: Geodetic observations of interseismic deformation in the Western United States provide constraints on microplate rotations, earthquake cycle processes, and slip partitioning across the Pacific–North America Plate boundary. These measurements may be interpreted using block models, in which the upper crust is divided into microplates bounded by faults that accumulate strain in a first-order approximation of earthquake cycle processes. The number and geometry of microplates are typically defined with boundaries representing a limited subset of the large number of potentially seismogenic faults. An alternative approach is to include a large number of potentially active faults bounding a dense array of microplates, and then algorithmically estimate the boundaries at which strain is localized. This approach is possible through the application of a total variation regularization (TVR) optimization algorithm, which simultaneously minimizes the L 2 norm of data residuals and the L 1 norm of the variation in the differential block motions. Applied to 3-D spherical block models, the TVR algorithm can be used to reduce the total variation between estimated rotation vectors, effectively grouping microplates that rotate together as larger blocks, and localizing fault slip on the boundaries of these larger block clusters. Here we develop a block model comprised of 137 microplates derived from published fault maps, and apply the TVR algorithm to identify the kinematically most important faults in the western United States. This approach reveals that of the 137 microplates considered, only 30 unique blocks are required to approximate deformation in the western United States at a residual level of 〈2 mm yr –1 .
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-13
    Description: The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of ‘dynamic topography’. 2-D thermomechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along an N–S directional profile through the region (e.g. northern/Pontides, interior and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity and high surface heat flow/widespread geothermal activity. Model results suggest that there is ~1 km of mantle flow induced dynamic topography associated with the sublithospheric flow driven by the seismically inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myr. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-01
    Description: We estimate fluid sources around a subducted seamount along the northern Hikurangi subduction margin of New Zealand, using thermomechanical numerical modelling informed by wedge structure and porosities from multichannel seismic data. Calculated fluid sources are input into an independent fluid-flow model to explore the key controls on overpressure generation to depths of 12 km. In the thermomechanical models, sediment transport through and beneath the wedge is calculated assuming a pressure-sensitive frictional rheology. The change in porosity, pressure and temperature with calculated rock advection is used to compute fluid release from compaction and dehydration. Our calculations yield more precise information about source locations in time and space than previous averaged estimates for the Hikurangi margin. The volume of fluid release in the wedge is smaller than previously estimated from margin-averaged calculations (~14 m 3  yr –1  m –1 ), and is exceeded by fluid release from underlying (subducting) sediment (~16 m 3  yr –1  m –1 ). Clay dehydration contributes only a small quantity of fluid by volume (~2 m 3  yr –1  m –1 from subducted sediment), but the integrated effect is still significant landward of the seamount. Fluid source terms are used to estimate fluid pressures around a subducting seamount in the fluid-flow models, using subducted sediment permeability derived from porosity, and testing two end-members for décollement permeability. Models in which the décollement acts as a fluid conduit predict only moderate fluid overpressure in the wedge and subducting sediment. However, if the subduction interface becomes impermeable with depth, significant fluid overpressure develops in subducting sediment landward of the seamount. The location of predicted fluid overpressure and associated dehydration reactions is consistent with the idea that short duration, shallow, slow slip events (SSEs) landward of the seamount are caused by anomalous fluid pressures; alternatively, it may result from frictional effects of changing clay content along the subduction interface.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-17
    Description: New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993–2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr –1 , indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ~12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4–5 mm yr –1 of left-lateral and 2–3 mm yr –1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may indicate a temporary shift of activity onto out of sequence thrusts like the Gain Thrust as opposed to the main frontal thrust (the Ramu-Markham fault). In addition, we show that the southern Highlands Fold-and-Thrust Belt is the major boundary between the rigid Australian Plate and the New Guinea Highlands Block, with convergence occurring at rates between ~6 and 13 mm yr –1 .
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...