ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C09S16, doi:10.1029/2004JC002601.
    Description: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (〉60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate 〈 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.
    Description: This research was supported by the European Union through programs CARUSO (1998– 2001), IRONAGES (1999 –2003), and COMET (2000–2003); the Netherlands- Bremen Oceanography program NEBROC-1; and the Netherlands Organization for Research NWO through the Netherlands Antarctic Program project FePath. Both the U.S. National Science Foundation and the U.S. Department of Energy provided significant support for the SOFeX program. M.R.L. acknowledges the U.S. National Science Foundation for support of IronEx and SOFeX projects and related studies (OCE-9912230, -9911765, and -0322074).
    Keywords: Iron ; Fertilization ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 175 (2015): 72-81, doi:10.1016/j.marchem.2015.02.011.
    Description: Carbon and nutrients are transported out of the surface ocean and sequestered at depth by sinking particles. Sinking particle sizes span many orders of magnitude and the relative influence of small particles on carbon export compared to large particles has not been resolved. To determine the influence of particle size on carbon export, the flux of both small (11–64 μm) and large (〉 64 μm) particles in the upper mesopelagic was examined during 5 cruises of the Bermuda Atlantic Time Series (BATS) in the Sargasso Sea using neutrally buoyant sediment traps mounted with tubes containing polyacrylamide gel layers and tubes containing a poisoned brine layer. Particles were also collected in surface-tethered, free-floating traps at higher carbon flux locations in the tropical and subtropical South Atlantic Ocean. Particle sizes spanning three orders of magnitude were resolved in gel samples, included sinking particles as small as 11 μm. At BATS, the number flux of small particles tended to increase with depth, whereas the number flux of large particles tended to decrease with depth. The carbon content of different sized particles could not be modeled by a single set of parameters because the particle composition varied across locations and over time. The modeled carbon flux by small particles at BATS, including all samples and depths, was 39 ± 20% of the modeled total carbon flux, and the percentage increased with depth in 4 out of the 5 months sampled. These results indicate that small particles (〈 64 μm) are actively settling in the water column and are an important contributor to carbon flux throughout the mesopelagic. Observations and models that overlook these particles will underestimate the vertical flux of organic matter in the ocean.
    Description: Funding for this study was provided by the National Science Foundation Chemical Oceanography Program (OCE-1260001 and 1406552 to M. L. Estapa) and the Woods Hole Oceanographic Institution Devonshire Postdoctoral Scholarship awarded to C. A. Durkin. Funding for the DeepDOM cruise was provided by the National Science Foundation Chemical Oceanography Program (OCE-1154320 to E. B. Kujawinski and K. Longnecker, WHOI).
    Keywords: Particle size ; Particle settling ; Carbon cycle ; Sediment traps ; Mesopelagic zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 175–193, doi:10.1002/2014GB004935.
    Description: The attenuation of sinking particle fluxes through the mesopelagic zone is an important process that controls the sequestration of carbon and the distribution of other elements throughout the oceans. Case studies at two contrasting sites, the oligotrophic regime of the Bermuda Atlantic Time-series Study (BATS) and the mesotrophic waters of the west Antarctic Peninsula (WAP) sector of the Southern Ocean, revealed large differences in the rates of particle-attached microbial respiration and the average sinking velocities of marine particles, two parameters that affect the transfer efficiency of particulate matter from the base of the euphotic zone into the deep ocean. Rapid average sinking velocities of 270 ± 150 m d−1 were observed along the WAP, whereas the average velocity was 49 ± 25 m d−1 at the BATS site. Respiration rates of particle-attached microbes were measured using novel RESPIRE (REspiration of Sinking Particles In the subsuRface ocEan) sediment traps that first intercepts sinking particles then incubates them in situ. RESPIRE experiments yielded flux-normalized respiration rates of 0.4 ± 0.1 day−1 at BATS when excluding an outlier of 1.52 day−1, while these rates were undetectable along the WAP (0.01 ± 0.02 day−1). At BATS, flux-normalized respiration rates decreased exponentially with respect to depth below the euphotic zone with a 75% reduction between the 150 and 500 m depths. These findings provide quantitative and mechanistic insights into the processes that control the transfer efficiency of particle flux through the mesopelagic and its variability throughout the global oceans.
    Description: Funding was provided by the University of Alaska Fairbanks, Woods Hole Oceanographic Institution (WHOI) Rinehart Access to the Sea Program, the WHOI Coastal Oceans Institute, WHOI Academic Programs Office, and the National Science Foundation (NSF) for support of PAL (ANT-0823101), FOODBANCS, and WAPflux (ANT- 83886600) projects. A grant from the NSF Carbon and Water Program (06028416) supported the development of these methods.
    Description: 2015-08-25
    Keywords: Biological pump ; Marine particles ; Carbon flux ; Sinking velocity ; Microbial respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 106 (2015): 9-16, doi:10.1016/j.dsr.2015.09.006.
    Description: The potential bioaccumulation of 137Cs in marine food webs off Japan became a concern following the release of radioactive contaminants from the damaged Fukushima nuclear power plant into the coastal ocean. Previous studies suggest that 137Cs activities increase with trophic level in pelagic food webs, however, the bioaccumulation of 137Cs from seawater to primary producers, to zooplankton has not been evaluated in the field. Since phytoplankton are frequently the largest component of SPM (suspended particulate matter) we used SPM concentrations and particle-associated 137Cs to understand bioaccumulation of 137Cs in through trophic pathways in the field. We determined particle-associated 137Cs for samples collected at 20 m depth from six stations off Japan three months after the initial release from the Fukushima nuclear power plant. At 20 m SPM ranged from 0.65 to 1.60 mg L-1 and rapidly declined with depth. The ratios of particulate organic carbon to chlorophyll a suggested that phytoplankton comprised much of the SPM in these samples. 137Cs activities on particles accounted for on average 0.04% of the total 137Cs in seawater samples, and measured concentration factors of 137Cs on small suspended particles were comparatively low (~102). However, when 137Cs in crustacean zooplankton was derived based only on modeling dietary 137Cs uptake, we found predicted and measured 137Cs concentrations in good agreement. We therefore postulate the possibility that the dietary route of 137Cs bioaccumulation (i.e., phytoplankton ingestion) could be largely responsible for the measured levels in the copepod-dominated (%) zooplankton assemblages in Japanese coastal waters. Finally, our data did not support the notion that zooplankton grazing on phytoplankton results in a biomagnification of 137Cs.
    Description: This project was funded by the Gordon and Betty Moore Foundation through Grants GBMF3007 and GBMF 3423, and JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas Grant Number 24110005.
    Description: 2016-09-25
    Keywords: Fukushima ; Cesium ; Trophic transfer ; Phytoplankton ; Zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 1312-1328, doi:10.1029/2018GB005934.
    Description: Ocean biological processes mediate the transport of roughly 10 petagrams of carbon from the surface to the deep ocean each year and thus play an important role in the global carbon cycle. Even so, the globally integrated rate of carbon export out of the surface ocean remains highly uncertain. Quantifying the processes underlying this biological carbon export requires a synthesis between model predictions and available observations of particulate organic carbon (POC) flux; yet the scale dissimilarities between models and observations make this synthesis difficult. Here we compare carbon export predictions from a mechanistic model with observations of POC fluxes from several data sets compiled from the literature spanning different space, time, and depth scales as well as using different observational methodologies. We optimize model parameters to provide the best match between model‐predicted and observed POC fluxes, explicitly accounting for sources of error associated with each data set. Model‐predicted globally integrated values of POC flux at the base of the euphotic layer range from 3.8 to 5.5 Pg C/year, depending on the data set used to optimize the model. Modeled carbon export pathways also vary depending on the data set used to optimize the model, as well as the satellite net primary production data product used to drive the model. These findings highlight the importance of collecting field data that average over the substantial natural temporal and spatial variability in carbon export fluxes, and advancing satellite algorithms for ocean net primary production, in order to improve predictions of biological carbon export.
    Description: NASA Ocean Biology and Biogeochemistry Program Grant Numbers: NNX16AR49G, NNXA122G, NNX16AR47G, OBB16_2‐0031; National Science Foundation
    Description: 2019-03-13
    Keywords: Carbon flux ; Remote sensing ; Carbon cycle ; Mechanistic model ; Optimization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-04
    Description: Citation only. Published in Science 316: 567-570, doi: 10.1126/science.1137959
    Description: Funding was obtained primarily through the NSF, Ocean Sciences Programs in Chemical and Biological Oceanography, with additional support from the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, and other national programs, including the Australian Cooperative Research Centre program and Australian Antarctic Division.
    Keywords: Carbon flux ; Carbon sequestration ; Biological pump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Durkin, C. A., Buesseler, K. O., Cetinic, I., Estapa, M. L., Kelly, R. P., & Omand, M. A visual tour of carbon export by sinking particles. Global Biogeochemical Cycles, 35(10), (2021): e2021GB006985, https://doi.org/10.1029/2021GB006985.
    Description: To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (〈100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
    Description: This work was supported by an NSF EAGER award to C. A. Durkin (OCE-1703664), M. L. Estapa (OCE-1703422), and M. Omand (OCE-1703336), and also by the NASA EXPORTS program (80NSSC17K0662), a NASA New Investigator award to M. L. Estapa (NNX14AM01G), the Rhode Island Endeavor Program (RIEP), NASA's PACE mission, and the Schmidt Ocean Institute.
    Keywords: Biological carbon pump ; Sediment traps ; Fecal pellets ; Aggregates ; Particles ; Salp
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roca-Marti, M., Benitez-Nelson, C. R., Umhau, B. P., Wyatt, A. M., Clevenger, S. J., Pike, S., Horner, T. J., Estapa, M. L., Resplandy, L., & Buesseler, K. O. Concentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00166, https://doi.org/10.1525/elementa.2020.00166.
    Description: Fluxes of major bioelements associated with sinking particles were quantified in late summer 2018 as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign near Ocean Station Papa in the subarctic northeast Pacific. The thorium-234 method was used in conjunction with size-fractionated (1–5, 5–51, and 〉51 μm) concentrations of particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica (bSi), and particulate inorganic carbon (PIC) collected using large volume filtration via in situ pumps. We build upon recent work quantifying POC fluxes during EXPORTS. Similar remineralization length scales were observed for both POC and PN across all particle size classes from depths of 50–500 m. Unlike bSi and PIC, the soft tissue–associated POC, PN, and TPP fluxes strongly attenuated from 50 m to the base of the euphotic zone (approximately 120 m). Cruise-average thorium-234-derived fluxes (mmol m–2 d–1) at 120 m were 1.7 ± 0.6 for POC, 0.22 ± 0.07 for PN, 0.019 ± 0.007 for TPP, 0.69 ± 0.26 for bSi, and 0.055 ± 0.022 for PIC. These bioelement fluxes were similar to previous observations at this site, with the exception of PIC, which was 1 to 2 orders of magnitude lower. Transfer efficiencies within the upper twilight zone (flux 220 m/flux 120 m) were highest for PIC (84%) and bSi (79%), followed by POC (61%), PN (58%), and TPP (49%). These differences indicate preferential remineralization of TPP relative to POC or PN and larger losses of soft tissue relative to biominerals in sinking particles below the euphotic zone. Comprehensive characterization of the particulate bioelement fluxes obtained here will support future efforts linking phytoplankton community composition and food-web dynamics to the composition, magnitude, and attenuation of material that sinks to deeper waters.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration as part of the EXport Processes in the Ocean from RemoTe Sensing program awards 80NSSC17K0555 and 80NSSC17K0662. They also acknowledge the funding from the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for MRM and KOB, the National Science Foundation Graduate Research Fellowship Program for AMW, and the Ocean Frontier Institute for MRM.
    Keywords: Biological pump ; Bioelements ; Particulate fluxes ; Transfer efficiency ; Size-fractionated particles ; EXPORTS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: VERTIGO project sediment trap flux data including mass, elements and phytoplankton pigment data from KM0414 and RR_K2 cruises. See Sampling and Analytical Protocols document for further information.
    Description: The main goal of VERTIGO is the investigation of the mechanisms that control the efficiency of particle transport through the mesopelagic portion of the water column. Question: What controls the efficiency of particle transport between the surface and deep ocean? More specifically, what is the fate of sinking particles leaving the upper ocean and what factors influence remineralization length scales for different sinking particle classes? VERTIGO researchers have set out to test two basic hypotheses regarding remineralization control, namely: 1. particle source characteristics are the dominant control on the efficiency of particle transport; and/or that 2. mid-water processing, either by zooplankton or bacteria, controls transport efficiency. To test their hypotheses, they will conduct process studies in the field focused on particle flux and composition changes in the upper 500-1000m of the ocean. The basic approach is to examine changes in particle composition and flux with depth within a given source region using a combination of approaches, many of which are new to the field. These include neutrally buoyant sediment traps, particle pumps, settling columns and respiration chambers, along with the development of new biological and geochemical tools for an integrated biogeochemical assessment of the biological pump. Three week process study cruises have been planned at two sites - the Hawaii Ocean Time-series site (HOT) and a new moored time-series site in the subarctic NW Pacific (Japanese site K2; 47°N 160°E) - where there are strong contrasts in rates of production, export, particle composition and expected remineralization length scales. Evidence for variability in the flux vs. depth relationship of sinking particles is not in dispute but the controls on particle transport efficiency through the twilight zone remain poorly understood. A lack of reliable flux and particle characterization data within the twilight zone has hampered our ability to make progress in this area, and no single approach is likely to resolve these issues. The proposed study will apply quantitative modeling to determine the net effects of the individual particle processes on the effective transport of carbon and other elements, and to place the shipboard observations in the context of spatial and temporal variations in these processes. For rapid progress in this area, we have organized this effort as a group proposal taking advantage of expertise in the US and international community. The efficiency of particle transport is important for an accurate assessment of the ocean C sink. Globally, the magnitude and efficiency of the biological pump will in part modulate levels of atmospheric CO2. We maintain that to understand present day ocean C sequestration and to evaluate potential strategies for enhancing sequestration, we need to assess possible changes in the efficiency of particle transport due to climate variability or via purposeful manipulations of C uptake, such as via iron fertilization.
    Description: NSF Division of Ocean Sciences (NSF-OCE) OCE-0301139
    Keywords: VERTIGO project ; Sediment traps ; Particle transport
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Format: application/pdf
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estapa, M., Buesseler, K., Durkin, C. A., Omand, M., Benitez-Nelson, C. R., Roca-Marti, M., Breves, E., Kelly, R. P., & Pike, S. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00122, https://doi.org/10.1525/elementa.2020.00122.
    Description: Comprehensive field observations characterizing the biological carbon pump (BCP) provide the foundation needed to constrain mechanistic models of downward particulate organic carbon (POC) flux in the ocean. Sediment traps were deployed three times during the EXport Processes in the Ocean from RemoTe Sensing campaign at Ocean Station Papa in August–September 2018. We propose a new method to correct sediment trap sample contamination by zooplankton “swimmers.” We consider the advantages of polyacrylamide gel collectors to constrain swimmer influence and estimate the magnitude of possible trap biases. Measured sediment trap fluxes of thorium-234 are compared to water column measurements to assess trap performance and estimate the possible magnitude of fluxes by vertically migrating zooplankton that bypassed traps. We found generally low fluxes of sinking POC (1.38 ± 0.77 mmol C m–2 d–1 at 100 m, n = 9) that included high and variable contributions by rare, large particles. Sinking particle sizes generally decreased between 100 and 335 m. Measured 234Th fluxes were smaller than water column 234Th fluxes by a factor of approximately 3. Much of this difference was consistent with trap undersampling of both small (〈32 μm) and rare, large particles (〉1 mm) and with zooplankton active migrant fluxes. The fraction of net primary production exported below the euphotic zone (0.1% light level; Ez-ratio = 0.10 ± 0.06; ratio uncertainties are propagated from measurements with n = 7–9) was consistent with prior, late summer studies at Station P, as was the fraction of material exported to 100 m below the base of the euphotic zone (T100, 0.55 ± 0.35). While both the Ez-ratio and T100 parameters varied weekly, their product, which we interpret as overall BCP efficiency, was remarkably stable (0.055 ± 0.010), suggesting a tight coupling between production and recycling at Station P.
    Description: The authors would like to acknowledge funding support from the NASA EXPORTS program (Award 80NSSC17K0662) for all sediment trap data presented here. Net primary production data collection was supported by EXPORTS (Award 80NSSC17K568) to Oregon State University. Thorium data collection was supported by EXPORTS (Award 80NSSC17K0555) to KB, CRBN, and L. Resplandy.
    Keywords: Biological carbon pump ; Ocean Station Papa ; Sediment traps ; Carbon flux ; Particle size distribution ; Swimmers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...