ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Ballast  (1)
  • Mesoscale activity  (1)
  • Triple oxygen isotopes  (1)
  • American Geophysical Union  (3)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C05012, doi:10.1029/2010JC006856.
    Description: The triple oxygen isotopic composition of dissolved oxygen (17Δ) is a promising tracer of gross oxygen productivity (P) in the ocean. Recent studies have inferred a high and variable ratio of P to 14C net primary productivity (12–24 h incubations) (e.g., P:NPP(14C) of 5–10) using the 17Δ tracer method, which implies a very low efficiency of phytoplankton growth rates relative to gross photosynthetic rates. We added oxygen isotopes to a one-dimensional mixed layer model to assess the role of physical dynamics in potentially biasing estimates of P using the 17Δ tracer method at the Bermuda Atlantic Time-series Study (BATS) and Hawaii Ocean Time-series (HOT). Model results were compared to multiyear observations at each site. Entrainment of high 17Δ thermocline water into the mixed layer was the largest source of error in estimating P from mixed layer 17Δ. At both BATS and HOT, entrainment bias was significant throughout the year and resulted in an annually averaged overestimate of mixed layer P of 60 to 80%. When the entrainment bias is corrected for, P calculated from observed 17Δ and 14C productivity incubations results in a gross:net productivity ratio of 2.6 (+0.9 −0.8) at BATS. At HOT a gross:net ratio decreasing linearly from 3.0 (+1.0 −0.8) at the surface to 1.4 (+0.6 −0.6) at depth best reproduced observations. In the seasonal thermocline at BATS, however, a significantly higher gross:net ratio or large lateral fluxes of 17Δ must be invoked to explain 17Δ field observations.
    Description: We acknowledge support from Center for Microbial Oceanography Research and Education (CMORE) (NSF EF-0424599) and NOAA Global Carbon Program (NA 100AR4310093). BL thanks the USA-Israel Binational Science Foundation for supporting his project at BATS.
    Description: 2012-11-08
    Keywords: Bermuda Atlantic Time-series ; Hawaii Ocean Time-series ; Primary production ; Triple oxygen isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): G03019, doi:10.1029/2011JG001830.
    Description: The upper ocean primary production measurements from the Hawaii Ocean Time series (HOT) at Station ALOHA in the North Pacific Subtropical Gyre showed substantial variability over the last two decades. The annual average primary production varied within a limited range over 1991–1998, significantly increased in 1999–2000 and then gradually decreased afterwards. This variability was investigated using a one-dimensional ecosystem model. The long-term HOT observations were used to constrain the model by prescribing physical forcings and lower boundary conditions and optimizing the model parameters against data using data assimilation. The model reproduced the general interannual pattern in the observed primary production, and mesoscale variability in vertical velocity was identified as a major contributing factor to the interannual variability in the simulation. Several strong upwelling events occurred in 1999, which brought up nitrate at rates several times higher than other years and elevated the model primary production. Our model results suggested a hypothesis for the observed interannual variability pattern of primary production at Station ALOHA: Part of the upwelled nitrate input in 1999 was converted to and accumulated as semilabile dissolved organic nitrogen (DON), and subsequent recycling of this semilabile DON supported enhanced primary productivity for the next several years as the semilabile DON perturbation was gradually removed via export.
    Description: This work was supported in part by the Center for Microbial Oceanography, Research and Education (C-MORE) (NSF EF-0424599), Hawaii Ocean Time series program (NSF OCE09–26766), the Gordon and Betty Moore Foundation, and the Marine Biological Laboratory.
    Description: 2013-03-10
    Keywords: Mesoscale activity ; North Pacific Subtropical Gyre ; Dissolved organic nitrogen ; Interannual variability ; Primary production
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cael, B. B., Bisson, K., Conte, M., Duret, M. T., Follett, C. L., Henson, S. A., Honda, M. C., Iversen, M. H., Karl, D. M., Lampitt, R. S., Mouw, C. B., Muller-Karger, F., Pebody, C. A., Smith, K. L., & Talmy, D. Open ocean particle flux variability from surface to seafloor. Geophysical Research Letters, 48(9), (2021): e2021GL092895, https://doi.org/10.1029/2021GL092895.
    Description: The sinking of carbon fixed via net primary production (NPP) into the ocean interior is an important part of marine biogeochemical cycles. NPP measurements follow a log-normal probability distribution, meaning NPP variations can be simply described by two parameters despite NPP's complexity. By analyzing a global database of open ocean particle fluxes, we show that this log-normal probability distribution propagates into the variations of near-seafloor fluxes of particulate organic carbon (POC), calcium carbonate, and opal. Deep-sea particle fluxes at subtropical and temperate time-series sites follow the same log-normal probability distribution, strongly suggesting the log-normal description is robust and applies on multiple scales. This log-normality implies that 29% of the highest measurements are responsible for 71% of the total near-seafloor POC flux. We discuss possible causes for the dampening of variability from NPP to deep-sea POC flux, and present an updated relationship predicting POC flux from mineral flux and depth.
    Description: B. B. Cael and S. A. Henson acknowledge support from the National Environmental Research Council (NE/R015953/1) and the Horizon 2020 Framework Programme (820989, project COMFORT). The work reflects only the authors' views; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. S. A. Henson also acknowledges support from a European Research Council Consolidator grant (GOCART, agreement number 724416). C. L. Follett acknowledges support from the Simons Foundation (grants #827829 and #553242). M. H. Iversen acknowledges support from the DFG-Research Center/Cluster of Excellence “The Ocean Floor – Earth's Uncharted Interface”: EXC-2077-390741603 and the HGF Young Investigator Group SeaPump “Seasonal and regional food web interactions with the biological pump”: VH-NG-1000. M. C. Honda acknowledges financial support from the Ministry of Education, Culture, Sports, Science, and Technology – Japan (grants #: KAKENHI JP18H04144 and JP19H05667). M. Conte acknowledges support from the US National Science Foundation, Division of Ocean Sciences for support for the Oceanic Flux Program time-series since inception, most recently by NSF OCE grant 1829885. D. M. Karl acknowledges support from the Gordon and Betty Moore Foundation (#3794) and the Simons Foundation (SCOPE #329108).
    Keywords: Ballast ; bathypelagic ; biogeochemistry ; log-normal ; particle flux ; variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...