ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes  (1)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous  (1)
  • Antarctica
  • Earthquake catalog
  • Fault plane solution, focal mechanism
  • TF III
  • ddc:550
  • American Geophysical Union  (2)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2017-04-04
    Description: We present an updated present-day stress data compilation for the Italian region and discuss it with respect to the geodynamic setting and the seismicity of the area. We collected and analyzed 190 new stress data from borehole breakouts, seismicity, and active faults and checked in detail the previous compilation [Montone et al., 1999]. Our improved data set consists of 542 data, 362 of which with a reliable quality for stress maps. The Italian region is well sampled, allowing the computation of constrained smoothed stress maps; for surrounding regions we added the World Stress Map 2003 release data. These maps depict the active stress conditions and, in the areas where the data are sparse, contribute to understand the relationship between active stress, past tectonic setting, and the seismicity of the study region. The new data are particularly representative along the northern Apennine front, from the Po Plain to offshore the Adriatic, and along the southern Tyrrhenian Sea, north of Sicily, where they point out a compressive tectonic regime. In the Alps both compressive and transcurrent regimes are observed. Our data also confirm that the whole Apenninic belt and the Calabrian arc are extending. Along the central Adriatic coast, changes from one stress regime to another are shown by abrupt variations in the minimum horizontal stress directions. Other gentler stress rotations, as, for instance, from the southern Apennines to the Calabrian arc or along the northern Apennines, follow the curvature of the arcs and are not associated to a stress regime variation.
    Description: Published
    Description: (B10410)
    Description: partially_open
    Keywords: active stress ; earthquakes ; borehole breakouts ; crust and lithosphere ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3452579 bytes
    Format: 711 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Adria is a small region surrounded by three mountain belts: the Alps, the Apennines, and the Dinarides, built up by long evolution of subduction and collisional systems. We present 253 shear wave splitting measurements obtained by studying more than 100 teleseismic events for 12 stations. SKS splitting measurements show 3-D complexity and quite strong upper mantle deformation. We carefully analyzed results in terms of back azimuthal coverage and interpret measurements as related to Adria rotation and to subductions evolution. In the northern part of Adria, the anisotropy pattern follows the arcuate shape of the Alps; the same pattern, parallel to the mountains, occurs along the Apennines, but fast directions show a sudden change in the Adria foreland. This lateral variation has been analyzed to isolate a distinct Adria mantle anisotropic pattern, which is identified as NE-SW fast direction along the western microplate boundary and as N-S fast direction at Trieste. This pattern might be induced by drag effect of the counterclockwise rotation of Adria lithosphere that behaves as an independent microplate as identified by GPS data. Our measurements suggest that the geodynamic process that generated the Alps is more efficient deforming a larger volume of mantle than its Apennine counterpart. Moreover, the mantle circulation we hypothesize looking at the regional-scale patterns of anisotropy requires the existence of an escape route beneath the Alps-Apennines transition, through which the mantle flows and feed circulation in the Tyrrhenian mantle system as suggested by previous geodynamic models and as seen by some tomographic studies.
    Description: Published
    Description: 5814–5826
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic Anisotropy ; Adriatic region ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...