ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 31 (1980), S. 189-201 
    ISSN: 1432-0827
    Keywords: Tooth enamel ; Thermal decomposition ; Water ; CO3 ; Hydroxyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Further insight into human tooth enamel, dense fraction (TE), has been obtained by following the change and loss of CO3 2−, OH−, structurally incorporated H2O, Cl−, and, indirectly, HPO4 2− after TE had been heated in N2 or vacuum in the range 25–1000°C. Quantitative infrared spectroscopic, lattice parameter, and thermogravimetric measures were used. Loss of the CO3 2− components begins at much lower temperature (e.g., 100°C) than previously recognized, which has implications for treatments in vitro and possibly in vivo. CO3 2− in B sites is lost continuously from the outset; the amount in A sites first decreases and then increases above 200° to a maximum at ∼800°C (〉10% of the possible A sites filled), where it is responsible for an increase ina lattice parameter. A substantial fraction of the CO3 2− in B sites moves to A sites before being evolved, apparently via a CO2 intermediary. This implies an interconnectedness of the A and B sites which may be significant in vivo. No loss of Cl− was observed at temperatures below 700–800°C. Structural OH− content increases ∼70% to a maximum near 400°C. Structurally incorporated water is lost continuously up to ∼800°C with a sharp loss at 250–300°C. The “sudden”a lattice parameter contraction, ∼0.014Å, occurs at a kinetics-dependent temperature in the 250–300°C range and is accompanied by reordering and the “sharp” loss of ∼1/3 of the structurally incorporated H2O. The hypothesis that structurally incorporated H2O is the principal cause of the enlargement of thea lattice parameter of TE compared to hydroxyapatite (9.44 vs 9.42Å) is thus allowed by these experimental results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...