ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Siderite  (2)
  • Engineering
  • Springer  (2)
  • Wiley-Blackwell  (1)
  • American Geophysical Union
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 85 (1996), S. 19-28 
    ISSN: 1437-3262
    Keywords: Anastomoses ; Crystal zoning ; Snow bands ; Liesegang rings ; Ostwald ripening ; Self organization ; Siderite ; Supersaturation theory ; Zebra rock
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Morphological instabilities in periodic patterns occurring both in precipitation and crystallization processes (Liesegang rings and crystal zoning) are investigated and compared with similar patterns in geological samples (zebra rocks and mud bands in snow sediments). In classical Liesegang systems, undisturbed parallel or concentric precipitation bands are emanated from even or concentric diffusion sources in homogeneous diffusion matrices of gelatine or other gels. In the case of superposing diffusion sources, sources with undulatory curvatures or local diffusion barriers there may occur several types of instabilities within the sequence of regular patterns: (a) gaps within the bands forming radial alleys free of precipitate, (b) transition from broken bands to speckled patterns and (c) apparent branching of bands linked together by so-called anastomoses. Calculations with a competitive particle growth (CPG) model show that lateral instabilities in Liesegang bands (gaps and radial alleys of gaps) are the result of Ostwald ripening effects taking place after precipitation. Apparent branching of bands or formation of anastomoses can be simulated with a prenucleation model according to Ostwald's supersaturation theory. Similar irregularities can be observed in zebra rocks (e.g. banded siderite) whose bandings are commonly explained by sequential sedimentation processes. A very different mechanism is assumed to be responsible for the origin of mud bands in snow sediments. An initially homogeneous distribution of intrinsic mud in snow sediments can be arranged into parallel bands according to a crystal zoning mechanism which is based on repeated thawing and freezing of the snow sediment due to the daily alternation of sun and darkness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 11 (1977), S. 1845-1863 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The paper describes a numerical method for determining the stress distribution in the interior of a three-dimensional body using experimentally determined surface stresses, and the interior displacements from surface displacements. The normal and shear stresses inside the body are obtained by solving Laplace's equation in terms of sum of normal stresses together with the three-dimensional compatibility equations in terms of stresses, using the finite difference technique, when the stresses on the surface of the body are known. On the other hand if surface displacements are known (from which strain components could be determined) then displacement components in the interior of a body can be determined by solving Laplace's equation in terms of sum of normal strains together with the three-dimensional equilibrium equations in terms of displacements. It is shown that axi-symmetric problems can also be solved in an identical way by transforming the equations into cylindrical co-ordinates. The application of the method has been illustrated through several examples.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 85 (1996), S. 19-28 
    ISSN: 0016-7835
    Keywords: Key words Anastomoses ; Crystal zoning ; Snow bands ; Liesegang rings ; Ostwald ripening ; Self organization ; Siderite ; Supersaturation theory ; Zebra rock
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Morphological instabilities in periodic patterns occurring both in precipitation and crystallization processes (Liesegang rings and crystal zoning) are investigated and compared with similar patterns in geological samples (zebra rocks and mud bands in snow sediments). In classical Liesegang systems, undisturbed parallel or concentric precipitation bands are emanated from even or concentric diffusion sources in homogeneous diffusion matrices of gelatine or other gels. In the case of superposing diffusion sources, sources with undulatory curvatures or local diffusion barriers there may occur several types of instabilities within the sequence of regular patterns: (a) gaps within the bands forming radial alleys free of precipitate, (b) transition from broken bands to speckled patterns and (c) apparent branching of bands linked together by so-called anastomoses. Calculations with a competitive particle growth (CPG) model show that lateral instabilities in Liesegang bands (gaps and radial alleys of gaps) are the result of Ostwald ripening effects taking place after precipitation. Apparent branching of bands or formation of anastomoses can be simulated with a prenucleation model according to Ostwald's supersaturation theory. Similar irregularities can be observed in zebra rocks (e.g. banded siderite) whose bandings are commonly explained by sequential sedimentation processes. A very different mechanism is assumed to be responsible for the origin of mud bands in snow sediments. An initially homogeneous distribution of intrinsic mud in snow sediments can be arranged into parallel bands according to a crystal zoning mechanism which is based on repeated thawing and freezing of the snow sediment due to the daily alternation of sun and darkness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...