ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • Wiley  (4)
  • Oxford University Press  (1)
  • American Geophysical Union
  • Public Library of Science
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  Molecular Ecology, 6 (3). pp. 297-298.
    Publication Date: 2021-04-22
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-05
    Description: Microsatellite DNA markers were applied for the first time in a population genetic study of a cephalopod and compared with previous estimates of genetic differentiation obtained using allozyme and mitochondrial DNA (mtDNA) markers. Levels of genetic variation detected with microsatellites were much higher than found with previous markers (mean number of alleles per locus=10.6, mean expected heterozygosity (HE)=0.79; allozyme HE=0.08; mtDNA restriction fragment length polymorphism (RFLP) HE=0.16). In agreement with previous studies, microsatellites demonstrated genetic uniformity across the population occupying the European shelf seas of the North East Atlantic, and extreme genetic differentiation of the Azores population (RST/FST=0.252/0.245; allozyme FST=0.536; mtDNA FST=0.789). In contrast to other markers, microsatellites detected more subtle, and significant, levels of differentiation between the populations of the North East Atlantic offshore banks (Rockall and Faroes) and the shelf population (RST=0.048 and 0.057). Breakdown of extensive gene flow among these populations is indicated, with hydrographic (water depth) and hydrodynamic (isolating current regimes) factors suggested as possible barriers to migration. The demonstration of genetic subdivision in an abundant, highly mobile marine invertebrate has implications for the interpretation of dispersal and population dynamics, and consequent management, of such a commercially exploited species. Relative levels of differentiation indicated by the three different marker systems, and the use of measures of differentiation (assuming different mutation models), are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-05
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The neritic-oceanic squid Illex argentinus supports one of the largest fisheries in the Southwest Atlantic. It is characterized by extensive migrations across the Patagonian Shelf and complex population structure comprising distinct seasonal spawning groups. To address uncertainty as to the demographic independence of these groups that may compromise sustainable management, a multidisciplinary approach was applied integrating statolith ageing with genome-wide single-nucleotide polymorphism (SNP) analysis. To obtain complete coverage of the spawning groups, sampling was carried out at multiple times during the 2020 fishing season and covered a large proportion of the species' range across the Patagonian Shelf. Statolith and microstructure analysis revealed three distinct seasonal spawning groups of winter-, spring-, and summer-hatched individuals. Subgroups were identified within each seasonal group, with statolith microstructure indicating differences in environmental conditions during ontogeny. Analysis of 〉10 000 SNPs reported no evidence of neutral or non-neutral genetic structure among the various groups. These findings indicate that I. argentinus across the Patagonian Shelf belong to one genetic population and a collaborative management strategy involving international stakeholders is required. The connectivity among spawning groups may represent a "bet-hedging" mechanism important for population resilience.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-03
    Description: Every piece of plastic is made up of a unique combination of the host polymer, with some residual monomers or catalysts, as well as chemical additives added during processing of the plastic. This chapter aims to introduce plastic additives with a focus on their chemistry and function, transport and fate, detection in marine environments, and toxicities. The extensive list of additives can be simplified by dividing the types of additives into three groups: functional additives, colorants, and fillers/reinforcements. Plasticizers are added to plastics to improve their flexibility, durability, and elasticity over a broad range of temperatures while also reducing the glass transition temperature and the melt flow. Additives are well known to leach from plastics in the marine environment. Like their plastic counterparts, plastic additives are also susceptible to oxidative degradation and biodegradation. The toxicity of plastic additives is quite variable given the diversity of their chemical classes.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...