ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon flux  (2)
  • EXPORTS
  • Phytoplankton
  • Sediment traps
  • American Geophysical Union  (2)
  • John Wiley & Sons  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C09S16, doi:10.1029/2004JC002601.
    Description: Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (〉60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate 〈 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.
    Description: This research was supported by the European Union through programs CARUSO (1998– 2001), IRONAGES (1999 –2003), and COMET (2000–2003); the Netherlands- Bremen Oceanography program NEBROC-1; and the Netherlands Organization for Research NWO through the Netherlands Antarctic Program project FePath. Both the U.S. National Science Foundation and the U.S. Department of Energy provided significant support for the SOFeX program. M.R.L. acknowledges the U.S. National Science Foundation for support of IronEx and SOFeX projects and related studies (OCE-9912230, -9911765, and -0322074).
    Keywords: Iron ; Fertilization ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 175–193, doi:10.1002/2014GB004935.
    Description: The attenuation of sinking particle fluxes through the mesopelagic zone is an important process that controls the sequestration of carbon and the distribution of other elements throughout the oceans. Case studies at two contrasting sites, the oligotrophic regime of the Bermuda Atlantic Time-series Study (BATS) and the mesotrophic waters of the west Antarctic Peninsula (WAP) sector of the Southern Ocean, revealed large differences in the rates of particle-attached microbial respiration and the average sinking velocities of marine particles, two parameters that affect the transfer efficiency of particulate matter from the base of the euphotic zone into the deep ocean. Rapid average sinking velocities of 270 ± 150 m d−1 were observed along the WAP, whereas the average velocity was 49 ± 25 m d−1 at the BATS site. Respiration rates of particle-attached microbes were measured using novel RESPIRE (REspiration of Sinking Particles In the subsuRface ocEan) sediment traps that first intercepts sinking particles then incubates them in situ. RESPIRE experiments yielded flux-normalized respiration rates of 0.4 ± 0.1 day−1 at BATS when excluding an outlier of 1.52 day−1, while these rates were undetectable along the WAP (0.01 ± 0.02 day−1). At BATS, flux-normalized respiration rates decreased exponentially with respect to depth below the euphotic zone with a 75% reduction between the 150 and 500 m depths. These findings provide quantitative and mechanistic insights into the processes that control the transfer efficiency of particle flux through the mesopelagic and its variability throughout the global oceans.
    Description: Funding was provided by the University of Alaska Fairbanks, Woods Hole Oceanographic Institution (WHOI) Rinehart Access to the Sea Program, the WHOI Coastal Oceans Institute, WHOI Academic Programs Office, and the National Science Foundation (NSF) for support of PAL (ANT-0823101), FOODBANCS, and WAPflux (ANT- 83886600) projects. A grant from the NSF Carbon and Water Program (06028416) supported the development of these methods.
    Description: 2015-08-25
    Keywords: Biological pump ; Marine particles ; Carbon flux ; Sinking velocity ; Microbial respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 1312-1328, doi:10.1029/2018GB005934.
    Description: Ocean biological processes mediate the transport of roughly 10 petagrams of carbon from the surface to the deep ocean each year and thus play an important role in the global carbon cycle. Even so, the globally integrated rate of carbon export out of the surface ocean remains highly uncertain. Quantifying the processes underlying this biological carbon export requires a synthesis between model predictions and available observations of particulate organic carbon (POC) flux; yet the scale dissimilarities between models and observations make this synthesis difficult. Here we compare carbon export predictions from a mechanistic model with observations of POC fluxes from several data sets compiled from the literature spanning different space, time, and depth scales as well as using different observational methodologies. We optimize model parameters to provide the best match between model‐predicted and observed POC fluxes, explicitly accounting for sources of error associated with each data set. Model‐predicted globally integrated values of POC flux at the base of the euphotic layer range from 3.8 to 5.5 Pg C/year, depending on the data set used to optimize the model. Modeled carbon export pathways also vary depending on the data set used to optimize the model, as well as the satellite net primary production data product used to drive the model. These findings highlight the importance of collecting field data that average over the substantial natural temporal and spatial variability in carbon export fluxes, and advancing satellite algorithms for ocean net primary production, in order to improve predictions of biological carbon export.
    Description: NASA Ocean Biology and Biogeochemistry Program Grant Numbers: NNX16AR49G, NNXA122G, NNX16AR47G, OBB16_2‐0031; National Science Foundation
    Description: 2019-03-13
    Keywords: Carbon flux ; Remote sensing ; Carbon cycle ; Mechanistic model ; Optimization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Durkin, C. A., Buesseler, K. O., Cetinic, I., Estapa, M. L., Kelly, R. P., & Omand, M. A visual tour of carbon export by sinking particles. Global Biogeochemical Cycles, 35(10), (2021): e2021GB006985, https://doi.org/10.1029/2021GB006985.
    Description: To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (〈100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
    Description: This work was supported by an NSF EAGER award to C. A. Durkin (OCE-1703664), M. L. Estapa (OCE-1703422), and M. Omand (OCE-1703336), and also by the NASA EXPORTS program (80NSSC17K0662), a NASA New Investigator award to M. L. Estapa (NNX14AM01G), the Rhode Island Endeavor Program (RIEP), NASA's PACE mission, and the Schmidt Ocean Institute.
    Keywords: Biological carbon pump ; Sediment traps ; Fecal pellets ; Aggregates ; Particles ; Salp
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...