ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure  (1)
  • Brine rejection  (1)
  • American Geophysical Union  (2)
  • Institute of Physics
Collection
Keywords
Publisher
  • American Geophysical Union  (2)
  • Institute of Physics
Years
  • 1
    Publication Date: 2017-04-03
    Description: We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of 0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging).
    Description: Published
    Description: D24S40
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: JCR Journal
    Description: reserved
    Keywords: satellite validation ; stratospheric HNO3 ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7153– 7177, doi: 10.1029/2019JC015261.
    Description: Data from a late spring survey of the northeast Chukchi Sea are used to investigate various aspects of newly ventilated winter water (NVWW). More than 96% of the water sampled on the shelf was NVWW, the saltiest (densest) of which tended to be in the main flow pathways on the shelf. Nearly all of the hydrographic profiles on the shelf displayed a two‐layer structure, with a surface mixed layer and bottom boundary layer separated by a weak density interface (on the order of 0.02 kg/m3). Using a polynya model to drive a one‐dimensional mixing model, it was demonstrated that, on average, the profiles would become completely homogenized within 14–25 hr when subjected to the March and April heat fluxes. A subset of the profiles would become homogenized when subjected to the May heat fluxes. Since the study domain contained numerous leads within the pack ice—many of them refreezing—and since some of the measured profiles were vertically uniform in density, this suggests that NVWW is formed throughout the Chukchi shelf via convection within small openings in the ice. This is consistent with the result that the salinity signals of the NVWW along the central shelf pathway cannot be explained solely by advection from Bering Strait or via modification within large polynyas. The local convection would be expected to stir nutrients into the water column from the sediments, which explains the high nitrate concentrations observed throughout the shelf. This provides a favorable initial condition for phytoplankton growth on the Chukchi shelf.
    Description: The authors are indebted to Commanding Officer John Reeves, Executive Officer Gregory Stanclik, Operations Officer Jacob Cass, and the entire crew of the USCGC Healy for their hard work and dedication in making the SUBICE cruise a success. We also acknowledge Scott Hiller for his assistance with Healy's meteorological data. We thank an anonymous reviewer for helpful input that improved the paper. Funding for A. P., R. P., C. N., and F. B. was provided by the National Science Foundation (NSF) under grant PLR‐1303617. K. M. was funded by the Natural Sciences and Engineering Research Council of Canada. K. V. acknowledges the Bergen Research Foundation under Grant BFS2016REK01. K. A. was supported by the NSF grant PLR‐1304563. The CTD and shipboard ADCP data are available from https://www.rvdata.us/search/cruise/HLY1401, and the nutrient data can be accessed from https://arcticdata.io/catalog/view/doi:10.18739/A2RG3Z and http://ocean.stanford.edu/subice/. The shipboard meteorological data reside at http://ocean.stanford.edu/subice/.
    Description: 2020-04-14
    Keywords: Brine rejection ; Chukchi Sea ; Convection ; Winter water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...