ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean acidification  (3)
  • Canadian Beaufort Sea
  • American Geophysical Union  (2)
  • Elsevier  (2)
  • PERGAMON-ELSEVIER SCIENCE LTD
Collection
Publisher
  • American Geophysical Union  (2)
  • Elsevier  (2)
  • PERGAMON-ELSEVIER SCIENCE LTD
Years
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 152 (2018): 67-81, doi:10.1016/j.dsr2.2018.05.020.
    Description: Ocean acidification (OA), driven by rising anthropogenic carbon dioxide (CO2), is rapidly advancing in the Pacific Arctic Region (PAR), producing conditions newly corrosive to biologically important carbonate minerals like aragonite. Naturally short linkages across the PAR food web mean that species-specific acidification stress can be rapidly transmitted across multiple trophic levels, resulting in widespread impacts. Therefore, it is critical to understand the formation, transport, and persistence of acidified conditions in the PAR in order to better understand and project potential impacts to this delicately balanced ecosystem. Here, we synthesize data from process studies across the PAR to show the formation of corrosive conditions in colder, denser winter-modified Pacific waters over shallow shelves, resulting from the combination of seasonal terrestrial and marine organic matter respiration with anthropogenic CO2. When these waters are subsequently transported off the shelf, they acidify the Pacific halocline. We estimate that Barrow Canyon outflow delivers ~2.24 Tg C yr-1 to the Arctic Ocean through corrosive winter water transport. This synthesis also allows the combination of spatial data with temporal data to show the persistence of these conditions in halocline waters. For example, one study in this synthesis indicated that 0.5–1.7 Tg C yr-1 may be returned to the atmosphere via air-sea gas exchange of CO2 during upwelling events along the Beaufort Sea shelf that bring Pacific halocline waters to the ocean surface. The loss of CO2 during these events is more than sufficient to eliminate corrosive conditions in the upwelled Pacific halocline waters. However, corresponding moored and discrete data records indicate that potentially corrosive Pacific waters are present in the Beaufort shelfbreak jet during 80% of the year, indicating that the persistence of acidified waters in the Pacific halocline far outweighs any seasonal mitigation from upwelling. Across the datasets in this large-scale synthesis, we estimate that the persistent corrosivity of the Pacific halocline is a recent phenomenon that appeared between 1975 and 1985. Over that short time, these potentially corrosive waters originating over the continental shelves have been observed as far as the entrances to Amundsen Gulf and M’Clure Strait in the Canadian Arctic Archipelago. The formation and transport of corrosive waters on the Pacific Arctic shelves may have widespread impact on the Arctic biogeochemical system and food web reaching all the way to the North Atlantic.
    Description: National Science Foundation Grant PLR-1303617.
    Keywords: Ocean acidification ; Pacific Arctic ; Arctic Ocean ; East Siberian Sea ; Chukchi Sea ; Beaufort Sea ; Transport ; Arctic Rivers ; Sea Ice ; Respiration ; Upwelling ; Biological vulnerability ; Community resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017424, https://doi.org/10.1029/2021JC017424.
    Description: By compiling boreal summer (June to October) CO2 measurements from 1989 to 2019 on the Bering and eastern Chukchi Sea shelves, we find that the study areas act as a CO2 sink except when impacted by river runoff and wind-driven upwelling. The CO2 system in this area is seasonally dominated by the biological pump especially in the northern Bering Sea and near Hanna Shoal, while wind-driven upwelling of CO2-rich bottom water can cause episodic outgassing. Seasonal surface ΔfCO2 (oceanic fCO2 – air fCO2) is dominantly driven by temperature only during periods of weak CO2 outgassing in shallow nearshore areas. However, after comparing the mean summer ΔfCO2 during the periods of 1989–2013 and 2014–2019, we suggest that temperature does drive long-term, multi-decadal patterns in ΔfCO2. In the northern Chukchi Sea, rapid warming concurrent with reduced seasonal sea-ice persistence caused the regional summer CO2 sink to decrease. By contrast, increasing primary productivity caused the regional summer CO2 sink on the Bering Sea shelf to increase over time. While additional time series are needed to confirm the seasonal and annual trajectory of CO2 changes and ocean acidification in these dynamic and spatially complex ecosystems, this study provides a meaningful mechanistic analysis of recent changes in inorganic carbonate chemistry. As high-resolution time series of inorganic carbonate parameters lengthen and short-term variations are better constrained in the coming decades, we will have stronger confidence in assessing the mechanisms contributing to long-term changes in the source/sink status of regional sub-Arctic seas.
    Description: We gratefully acknowledge the support of the funding agencies that supported this analysis, including the New Sustained Observations for Arctic Research project and the DBO-NCIS project (NA14OAR4320158, NA19OAR4320074) from the NOAA Arctic Research Program.
    Description: 2022-06-17
    Keywords: Pacific Arctic region ; Sea-air CO2 flux ; Ocean acidification ; Climate change ; Sea-ice loss ; Surface ocean CO2 Atlas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, P., Pickart, R. S., Fissel, D., Ross, E., Kasper, J., Bahr, F., Torres, D. J., O'Brien, J., Borg, K., Melling, H., & Wiese, F. K. Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array. Progress in Oceanography, 187, (2020): 102396, doi:10.1016/j.pocean.2020.102396.
    Description: Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
    Description: The authors are indebted to Fisheries and Oceans Canada for building the logistics for MARES into the at-sea missions of the Integrated Beaufort Observatory. We are grateful to the captain and crew of the CCGS Sir Wilfred Laurier for ably deploying and recovering the MARES array. Marshall Swartz assisted with the cruise preparation logistics. We thank the two anonymous reviewers for their input which helped improve the paper. This project was funded by the US Bureau of Ocean Energy Management (BOEM), on behalf of the National Ocean Partnership Program. The Canadian contribution was supported by the Environmental Studies Research Fund (ESRF Project 2014-02N). MARES publication 003.
    Keywords: Canadian Beaufort Sea ; Mackenzie Canyon ; Boundary currents ; Canyon circulation ; Ice-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.
    Description: The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (〈−1.2°C), salty (〉32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 〉 550 μatm) and undersaturated in aragonite (Ωaragonite 〈 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.
    Description: Funding for this work was provided by the National Science Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694- LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021- RHB) and the West Coast & Polar Regions Undersea Research Center (POFP00983 – CLM and JM).
    Description: 2012-10-11
    Keywords: Arctic Ocean ; CO2 fluxes ; Ocean acidification ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: image/tiff
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...