ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-06
    Description: Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( 
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-31
    Description: It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic, due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth System Models (JSBACH, Germany; JULES, UK and ORCHIDEE, France). We use a site-level approach where comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate soil biological and physical processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus we identify three priority areas for model development: 1. Dynamic vegetation including a. climate and b. nutrient limitation effects. 2. Adding moss as a plant functional type. 3. Improved vertical profile of soil carbon including peat processes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-17
    Description: It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-04
    Description: The currently observed climate warming will lead to substantial permafrost degradation and mobilization of formerly freeze-locked matter. Based on recent findings, we assume that there are substantial stocks of inorganic nitrogen (N) within the perennially frozen ground of arctic ecosystems. We studied eleven soil profiles down to one meter depth below surface at three different sites in arctic eastern Siberia, covering polygonal tundra and river floodplains, to assess the amount of inorganic N stores in arctic permafrost-affected soils. Furthermore, we modeled the potential thickening of the seasonally unfrozen uppermost soil (active) layer for these sites, using the CryoGrid2 permafrost model and representation concentration pathway (RCP) 4.5 and 8.5 scenarios. The first scenario, RCP4.5, is a stabilization pathway that reaches plateau atmospheric carbon concentrations early in the 21st century; the second, RCP8.5, is a business as usual emission scenario with increasing carbon emissions. The modeled increases in active layer thickness (ALT) were used to estimate potential annual N mobilization from permafrost-affected soils in the course of climate-induced active-layer deepening. We observed significant stores of inorganic ammonium in the perennially frozen ground of all investigated soils, up to 40-fold higher than in the active layer. The modeled ALT increase until 2100 under the RCP8.5 scenario was between 19 ± 3 cm and 35 ± 6 cm, depending on the location. Under the RCP4.5 scenario, the ALT remained stable in all investigated soils. Our estimated mean annual N release under the RCP8.5 scenario is between 8 ± 3 mg m−2 and 81 ± 14 mg m−2 for the different locations, which reaches values up to the order of magnitude of annual fixation of atmospheric N in arctic soils. However, the thawing induced release of N represents only a small flux in comparison with the overall ecosystem N cycling.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-11-22
    Description: Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e. waterbodies with surface areas smaller than 1.0E+04 m2, have not been inventoried at global and regional scales. The Permafrost Region Pond and Lake Database (PeRL) presents the results of a circum-arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better that resolve waterbodies with a surface area between 1.0E+02 m2 and 1.0E+06 m2. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1.4E+06 km2 across the Arctic, about 17 % of the Arctic lowland (
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-28
    Description: Permafrost is a sensitive element of the cryosphere, but operational monitoring of the ground thermal conditions on large spatial scales is still lacking. Here, we demonstrate a remote-sensing-based scheme that is capable of estimating the transient evolution of ground temperatures and active layer thickness by means of the ground thermal model CryoGrid 2. The scheme is applied to an area of approximately 16 000 km2 in the Lena River delta (LRD) in NE Siberia for a period of 14 years. The forcing data sets at 1 km spatial and weekly temporal resolution are synthesized from satellite products and fields of meteorological variables from the ERA-Interim reanalysis. To assign spatially distributed ground thermal properties, a stratigraphic classification based on geomorphological observations and mapping is constructed, which accounts for the large-scale patterns of sediment types, ground ice and surface properties in the Lena River delta. A comparison of the model forcing to in situ measurements on Samoylov Island in the southern part of the study area yields an acceptable agreement for the purpose of ground thermal modeling, for surface temperature, snow depth, and timing of the onset and termination of the winter snow cover. The model results are compared to observations of ground temperatures and thaw depths at nine sites in the Lena River delta, suggesting that thaw depths are in most cases reproduced to within 0.1 m or less and multi-year averages of ground temperatures within 1–2 °C. Comparison of monthly average temperatures at depths of 2–3 m in five boreholes yielded an RMSE of 1.1 °C and a bias of −0.9 °C for the model results. The highest ground temperatures are calculated for grid cells close to the main river channels in the south as well as areas with sandy sediments and low organic and ice contents in the central delta, where also the largest thaw depths occur. On the other hand, the lowest temperatures are modeled for the eastern part, which is an area with low surface temperatures and snow depths. The lowest thaw depths are modeled for Yedoma permafrost featuring very high ground ice and soil organic contents in the southern parts of the delta. The comparison to in situ observations indicates that transient ground temperature modeling forced by remote-sensing data is generally capable of estimating the thermal state of permafrost (TSP) and its time evolution in the Lena River delta. The approach could hence be a first step towards remote detection of ground thermal conditions and active layer thickness in permafrost areas.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-07
    Description: Ice-wedge polygons are common features of lowland tundra in the continuous permafrost zone and prone to rapid degradation through melting of ground ice. There are many inter-related processes involved in ice-wedge thermokarst and it is a major challenge to quantify their influence on the stability of the permafrost underlying the landscape. In this study we used a numerical modelling approach to investigate the degradation of ice-wedges with a focus on the influence of hydrological conditions. Our study area was Samoylov Island in the Lena River delta of Northern Siberia, for which we had in-situ measurements to evaluate the model. The tailored version of the CryoGrid3 Land Surface Model was capable of simulating the changing micro-topography of polygonal tundra and also regarded lateral fluxes of heat, water, and snow. We demonstrated that the approach is capable of simulating ice-wedge degradation and the associated transition from a low-centred to a high-centred polygonal micro-topography. The model simulations showed ice-wedge degradation under recent climatic conditions of the study area, irrespective of hydrological conditions. However, we found that wetter conditions lead to an earlier onset of degradation and cause more rapid ground subsidence. We set our findings in correspondence to observed types of ice-wedge polygons in the study area and hypothesized on remaining discrepancies between modelled and observed ice-wedge thermokarst activity. Our quantitative approach provides a valuable complement to previous, more qualitative and conceptual, descriptions of the possible pathways of ice-wedge polygon evolution. We concluded that our study is a blueprint for investigating thermokarst landforms and marks a step forward in understanding the complex interrelationships between various processes shaping ice-rich permafrost landscapes.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-23
    Description: Most of the world's permafrost is located in the Arctic, where its frozen organic carbon con-tent makes it a potentially important influence on the global climate system. The Arctic climate appears to be changing more rapidly than the lower latitudes, but observational data density in the region is low. Permafrost thaw and carbon release into the atmosphere is a positive feed-back mechanism that has the potential for climate warming. It is therefore particularly im-portant to understand the links between the energy balance, which can vary rapidly over hour-ly to annual time scales, and permafrost condition, which changes slowly on decadal to cen-tennial timescales. This requires long-term observational data such as that available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, pro-cessing and data quality control. Additional data include a high-resolution digital terrain mod-el (DTM) obtained from terrestrial LiDAR laser scanning. Since the data provide observations of temporally variable parameters that influence energy fluxes between permafrost, active lay-er soils, and the atmosphere (such as snow depth and soil moisture content), they are suitable for calibrating and quantifying the dynamics of permafrost as a component in earth system models. The data also include soil properties beneath different microtopographic features (a polygon center, a rim, a slope, and a trough), yielding much-needed information on landscape heterogeneity for use in land surface modeling. For the record from 1998 to 2017, the average mean annual air temperature was −12.3°C, with mean monthly temperature of the warmest month (July) recorded as 9.5°C and for the coldest month (February) −32.7°C. The average annual rainfall was 169mm. The depth of zero annual amplitude niveau is at 20.8m, and has warmed from −9.1°C in 2006 to −7.7°C in 2017. The presented data are available in the supplementary material of this paper and through the PANGAEA website (https://doi.org/10.1594/PANGAEA.891142).
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-01
    Description: Three-dimensional data acquired by terrestrial laser scanning (TLS) provides an accurate representation of Earth's surface, which is commonly used to detect and quantify topographic changes on a small scale. However, in Arctic permafrost regions the tundra vegetation and the micro-topography have significant effects on the surface representation in the captured dataset. The resulting spatial sampling of the ground is never identical between two TLS surveys. Thus, monitoring of heave and subsidence in the context of permafrost processes are challenging. This study evaluates TLS for quantifying small-scale vertical movements in an area located within the continuous permafrost zone, 50 km north-east of Inuvik, Northwest Territories, Canada. We propose a novel filter strategy, which accounts for spatial sampling effects and identifies TLS points suitable for multi-temporal deformation analyses. Further important prerequisites must be met, such as accurate co-registration of the TLS datasets. We found that if the ground surface is captured by more than one TLS scan position, plausible subsidence rates (up to mm-scale) can be derived; compared to e.g. standard raster-based DEM difference maps which contain change rates strongly affected by sampling effects.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-18
    Description: Ground-based observations of land–atmosphere fluxes are necessary to progressively improve global climate models. Observed data can be used for model evaluation and to develop or tune process models. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic (72∘22′ N, 126∘30′ E). The site is part of the international network of eddy covariance flux observation stations (FLUXNET; site ID: Ru-Sam). The data set includes consistently processed fluxes based on concentration measurements of closed-path and open-path gas analyzers. With parallel records from both sensor types, we were able to apply a site-specific correction to open-path fluxes. This correction is necessary due to a deterioration of data, caused by heat generated by the electronics of open-path gas analyzers. Parameterizing this correction for subperiods of distinct sensor setups yielded good agreement between open- and closed-path fluxes. We compiled a long-term (2002 to 2017) carbon dioxide flux time series that we additionally gap-filled with a standardized approach. The data set was uploaded to the Pangaea database and can be accessed through https://doi.org/10.1594/PANGAEA.892751.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...