ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Arctic rivers  (2)
  • Nitrogen  (2)
  • Changes  (1)
  • Climate change  (1)
  • Discharge anormaly  (1)
  • American Geophysical Union  (6)
  • Blackwell Science Ltd
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L18606, doi:10.1029/2008GL035007.
    Description: We present new flow-weighted data for δ 18OH2O, dissolved organic carbon (DOC), dissolved barium and total alkalinity from the six largest Arctic rivers: the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie. These data, which can be used to trace runoff, are based upon coordinated collections between 2003 and 2006 that were temporally distributed to capture linked seasonal dynamics of river flow and tracer values. Individual samples indicate significant variation in the contributions each river makes to the Arctic Ocean. Use of these new flow-weighted estimates should reduce uncertainties in the analysis of freshwater transport and fate in the upper Arctic Ocean, including the links to North Atlantic thermohaline circulation, as well as regional water mass analysis. Additional improvements should also be possible for assessing the mineralization rate of the globally significant flux of terrigenous DOC contributed to the Arctic Ocean by these major rivers.
    Description: Supported by the U.S. National Science Foundation (OPP-0229302), the U.S. Geological Survey and the Water Resources Division of Canada’s Department of Indian Affairs and Northern Development.
    Keywords: Arctic rivers ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02026, doi:10.1029/2007JG000470.
    Description: Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ∼1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999–2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood.
    Description: The results presented in this report are based upon work supported by the U.S. National Science Foundation under grants to the Arctic Hyporheic project (OPP- 0327440) and the Arctic Long-Term Ecological Research Program (DEB- 9810222).
    Keywords: Arctic ; Climate change ; Streams ; Ecosystem dynamics ; Sediment ; Thermokarst ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S54, doi:10.1029/2006JG000353.
    Description: Dramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems.
    Description: The authors gratefully acknowledge the National Science Foundation (NSF) for funding this synthesis work. This paper is principally the work of authors funded under the NSF-funded Freshwater Integration (FWI) study.
    Keywords: Arctic ; Freshwater ; System ; Changes ; Impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB1027, doi:10.1029/2011GB004159.
    Description: We present the results of a 4-year collaborative sampling effort that measured δ18O, δ2H values and 3H activities in the six largest Arctic rivers (the Ob, Yenisey, Lena, Kolyma, Yukon and Mackenzie). Using consistent sampling and data processing protocols, these isotopic measurements provide the best available δ2H and 3H estimates for freshwater fluxes from the pan-Arctic watershed to the Arctic Ocean and adjacent seas, which complements previous efforts with δ18O and other tracers. Flow-weighted annual δ2H values vary from −113.3‰ to −171.4‰ among rivers. Annual 3H fluxes vary from 0.68 g to 4.12 g among basins. The integration of conventional hydrological and landscape observations with stable water isotope signals, and estimation of areal yield of 3H provide useful insights for understanding water sources, mixing and evaporation losses in these river basins. For example, an inverse correlation between the slope of the δ18O-δ2H relation and wetland extent indicates that wetlands play comparatively important roles affecting evaporation losses in the Yukon and Mackenzie basins. Tritium areal yields (ranging from 0.760 to 1.695 10−6 g/km2 per year) are found to be positively correlated with permafrost coverage within the studied drainage basins. Isotope-discharge relationships demonstrate both linear and nonlinear response patterns, which highlights the complexity of hydrological processes in large Arctic river basins. These isotope observations and their relationship to discharge and landscape features indicate that basin-specific characteristics significantly influence hydrological processes in the pan-Arctic watershed.
    Description: Funding for this research was provided by the U.S. National Science Foundation (OPP-0229302), the National Science and Engineering Research Council of Canada (Discovery grant to JJG and IRD fellowship to YY), the U.S. Geological Survey and the Water Resources Division in the Department of Indian Affairs and Northern Development, Canada.
    Description: 2012-09-22
    Keywords: Arctic rivers ; Discharge anormaly ; Flow-weighted flux ; Stable water isotopes ; Tritium
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB2026, doi:10.1029/2007GB002963.
    Description: We explored the role of aquatic systems in the global N cycle using a spatially distributed, within-basin, aquatic nitrogen (N) removal model, implemented within the Framework for Aquatic Modeling in the Earth System (FrAMES-N). The model predicts mean annual total N (TN) removal by small rivers (with drainage areas from 2.6–1000 km2), large rivers, lakes, and reservoirs, using a 30′ latitude × longitude river network to route and process material from continental source areas to the coastal zone. Mean annual aquatic TN removal (for the mid-1990s time period) is determined by the distributions of aquatic TN inputs, mean annual hydrological characteristics, and biological activity. Model-predicted TN concentrations at basin mouths corresponded well with observations (median relative error = −12%, interquartile range of relative error = 85%), an improvement over assumptions of uniform aquatic removal across basins. Removal by aquatic systems globally accounted for 14% of total N inputs to continental surfaces, but represented 53% of inputs to aquatic systems. Integrated aquatic removal was similar in small rivers (16.5% of inputs), large rivers (13.6%), and lakes (15.2%), while large reservoirs were less important (5.2%). Bias related to runoff suggests improvements are needed in nonpoint N input estimates and/or aquatic biological activity. The within-basin approach represented by FrAMES-N will improve understanding of the freshwater nutrient flux response to anthropogenic change at global scales.
    Description: This work was funded by NASA-IDS (NNXO7AF28G, NNG04GH75G), NSF-LTER OCE-9726921, and NOAA (NA17RJ2612 – 344 to Princeton University).
    Keywords: Nitrogen ; River network ; Global
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G03038, doi:10.1029/2007JG000660.
    Description: River systems are dynamic, highly connected water transfer networks that integrate a wide range of physical and biological processes. We used a river network nitrogen (N) removal model with daily temporal resolution to evaluate how elevated N inputs, saturation of the denitrification and total nitrate removal processes, and hydrologic conditions interact to determine the amount, timing and distribution of N removal in the fifth-order river network of a suburban 400 km2 basin. Denitrification parameters were based on results from whole reach 15NO3 tracer additions. The model predicted that between 15 and 33% of dissolved inorganic nitrogen (DIN) inputs were denitrified annually by the river system. Removal approached 100% during low flow periods, even with the relatively low and saturating uptake velocities typical of surface water denitrification. Annual removal percentages were moderate because most N inputs occurred during high flow periods when hydraulic conditions and temperatures are less favorable for removal by channel processes. Nevertheless, the percentage of annual removal occurring during above average flow periods was similar to that during low flow periods. Predicted river network removal proportions are most sensitive to loading rates, spatial heterogeneity of inputs, and the form of the removal process equation during typical base flow conditions. However, comparison with observations indicates that removal by the river network is higher than predicted by the model at moderately high flows, suggesting additional removal processes are important at these times. Further increases in N input to the network will lead to disproportionate increases in N exports due to the limits imposed by process saturation.
    Description: This work was funded by NSF-DEB- 0614282, NSF-OCE-9726921, NSF-DEB-0111410, and NSF-BCS- 0709685.
    Keywords: Nitrogen ; Removal ; Saturation ; Hydrology ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...