ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (5)
  • Copernicus  (2)
  • 1
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Primary Production
    Description: Primary productivity measurements from the Hawaii Ocean Time-Series (HOT). Photosynthetic production of organic matter was measured by the 14C tracer method. All incubations from 1990 through mid-2000 were conducted in situ at eight depths (5, 25, 45, 75, 100, 125, 150 and 175m) over one daylight period using a free-drifting array as described by Winn et al. (1991). Starting HOT-119 (October 2000), we collected samples from only the upper six depths & modeled the lower two depths based on the monthly climatology. During 2015, all incubations were conducted in situ on a free floating, surface tethered array. Integrated carbon assimilation rates were calculated using the trapezoid rule with the shallowest value extended to 0 meters and the deepest extrapolated to a value of zero at 200 meters. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/737163
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0926766
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Particle Flux
    Description: Particle flux measurements from the Hawaii Ocean Time-Series (HOT). Particle flux was measured at a standard reference depth of 150 m using multiple cylindrical particle interceptor traps deployed on a free-floating array for approximately 60 h during each cruise. Sediment trap design and collection methods are described in Winn et al. (1991). Samples were analyzed for particulate C, N, P & Si. Typically six traps are analyzed for PC and PN, three for PP, and another three traps for PSi. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/737393
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0926766
    Keywords: HOT ; time series ; Hawaii Ocean Time-series
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: CTD Profiles
    Description: HOT CTD data are collected using a SeaBird CTD 9-11 (9-11 Plus with dual sensors as of HOT-54) at the maximum sampling rate of 24 samples per second (24 Hz). They are screened for errors and processed to 2-dbar averages. The majority of the sampling effort, approximately 60-72 h per standard HOT cruise, is spent at Station ALOHA. High vertical resolution environmental data are collected with a Sea-Bird CTD having external temperature (T), conductivity (C), dissolved oxygen (DO) and fluorescence (F) sensors and an internal pressure (P) sensor. A Sea-Bird 24-place carousel and an aluminum rosette that is capable of supporting 24 12-L PVC bottles are used to obtain water samples from desired depths. The CTD and rosette are deployed on a 3-conductor cable allowing for real-time display of data and for tripping the bottles at specific depths of interest. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3937
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0926766
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Dataset: Water column methane ethylene and nutrients
    Description: Concentration measurements of water column phosphate, nitrate and nitrite, dissolved organic phosphorus, methane, and ethylene from samples collected during the R/V Niel Armstrong cruise AR16 in the western North Atlantic Ocean in May 2017. Seawater was collected from Niskin bottles deployed on a rosette with a CTD. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/769203
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1634080
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Niskin bottle samples
    Description: Monthly measurements of the thermohaline structure, water column chemistry, and primary production were collected at station ALOHA as part of the HOT program. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3773
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0926766
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-10-05
    Description: Large-scale climatic forcing is impacting oceanic biogeochemical cycles and is expected to influence the water-column distribution of trace gases, including methane and nitrous oxide. Our ability as a scientific community to evaluate changes in the water-column inventories of methane and nitrous oxide depends largely on our capacity to obtain robust and accurate concentration measurements that can be validated across different laboratory groups. This study represents the first formal international intercomparison of oceanic methane and nitrous oxide measurements whereby participating laboratories received batches of seawater samples from the subtropical Pacific Ocean and the Baltic Sea. Additionally, compressed gas standards from the same calibration scale were distributed to the majority of participating laboratories to improve the analytical accuracy of the gas measurements. The computations used by each laboratory to derive the dissolved gas concentrations were also evaluated for inconsistencies (e.g., pressure and temperature corrections, solubility constants). The results from the intercomparison and intercalibration provided invaluable insights into methane and nitrous oxide measurements. It was observed that analyses of seawater samples with the lowest concentrations of methane and nitrous oxide had the lowest precisions. In comparison, while the analytical precision for samples with the highest concentrations of trace gases was better, the variability between the different laboratories was higher: 36 % for methane and 27 % for nitrous oxide. In addition, the comparison of different batches of seawater samples with methane and nitrous oxide concentrations that ranged over an order of magnitude revealed the ramifications of different calibration procedures for each trace gas. Finally, this study builds upon the intercomparison results to develop recommendations for improving oceanic methane and nitrous oxide measurements, with the aim of precluding future analytical discrepancies between laboratories.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-14
    Description: Large scale climatic forcing is impacting oceanic biogeochemical cycles and is expected to influence the water-column distribution of trace gases including methane and nitrous oxide. Our ability as a scientific community to evaluate changes in the water-column inventories of methane and nitrous oxide depends largely on our capacity to obtain robust and accurate concentration measurements which can be validated across different laboratory groups. This study represents the first formal, international, intercomparison of oceanic methane and nitrous oxide measurements whereby participating laboratories received batches of seawater samples from the subtropical Pacific and the Baltic Sea. Additionally, compressed gas standards from the same calibration scale were distributed to the majority of participating laboratories to improve the analytical accuracy of the gas measurements. The computations used by each laboratory to derive the dissolved gas concentrations were also evaluated for inconsistencies (e.g. pressure and temperature corrections, solubility constants). The results from the intercomparison and intercalibration exercises provided invaluable insights into methane and nitrous oxide measurements. It was observed that analyses of seawater samples with the lowest concentrations of methane and nitrous oxide had the lowest precisions. In comparison, while the analytical precision for samples with the highest concentrations of trace gases was better, the variability between the different laboratories was higher; 36% for methane and 27% for nitrous oxide. In addition, the comparison of different batches of seawater samples with methane and nitrous oxide concentrations that ranged over an order of magnitude revealed the ramifications of different calibration procedures for each trace gas. Overall, this paper builds upon the intercomparison results to develop a framework for improving oceanic methane and nitrous oxide measurements, with the aim of precluding future analytical discrepancies between laboratories.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...